
Adding Heuristics to Conflict-Based Search for Multi-Agent Path Finding

Ariel Felner
SISE Department

Ben-Gurion University
Israel

felner@bgu.ac.il

Jiaoyang Li
CS Department

Univ. of Southern California
USA

jiaoyanl@usc.edu

Eli Boyarski
SISE Department

Ben-Gurion University
Israel

eli.boyarski@gmail.com

Hang Ma
Liron Cohen

T. K. Satish Kumar
Sven Koenig

Univ. of Southern California
USA

Abstract

Conflict-Based Search (CBS) and its enhancements are
among the strongest algorithms for the multi-agent path-
finding problem. However, existing variants of CBS do not
use any heuristics that estimate future work. In this paper, we
introduce different admissible heuristics for CBS by aggre-
gating cardinal conflicts among agents. In our experiments,
CBS with these heuristics outperforms previous state-of-the-
art CBS variants by up to a factor of five.

1 Introduction and Overview
The Multi-Agent Path-Finding (MAPF) problem is specified
by a graph G = (V,E) and a set of k agents {a1 . . . ak},
where agent ai has start location si ∈ V and goal location
gi ∈ V . Time is discretized into time steps, and agent ai is
in location si at time step t0. Between successive time steps,
each agent can either move to an adjacent empty location or
wait in its current location. Both move and wait actions incur
a cost of one. A path for agent ai is a sequence of move and
wait actions that lead agent ai from location si to location gi.
A conflict between two paths is a tuple 〈ai, aj , v, t〉, meaning
that agents ai and aj both occupy the same vertex v at the
same time step t. A solution is a set of k paths, one for each
agent. The objective is to find a conflict-free solution. Felner
et al. (2017) and Ma and Koenig (2017) provide surveys of
different settings, applications and algorithms for MAPF.

Conflict-Based Search (CBS) (Sharon et al. 2012a; 2015)
is an optimal two-level search-based algorithm for MAPF
for which also suboptimal variants exist (Barer et al. 2014;
Cohen, Uras, and Koenig 2015; Cohen et al. 2016). It is
useful for many real-world applications such as automated
warehousing (Hönig et al. 2016; Ma, Kumar, and Koenig
2017) and other robotics applications (Hoenig et al. 2016).
We focus here on the classic CBS variant that minimizes the
sum-of-costs objective (Standley 2010; Standley and Korf
2011; Sharon et al. 2013; 2015) (that is, the sum of the path
cost of all agents), which is NP-hard (Yu and LaValle 2013;
Ma et al. 2016b).1

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1There also exist CBS variants that minimize the makespan ob-
jective (that is, the largest individual path cost among all agents)
but our heuristics apply only to the sum-of-costs objective.

A number of enhancements to and generalizations of CBS
have been introduced (Sharon et al. 2015; Ma et al. 2016a).
Improved CBS (ICBS) (Boyarski et al. 2015) is one of its
strongest variants. However, all existing CBS variants use
only the costs of the (possibly conflicting) paths in the nodes
of the CBS constraint tree as the costs of the nodes. These
costs can be considered to be the g-values of the nodes. Our
contribution is to calculate admissible heuristics and thus
add h-values to the costs of these nodes. To this end, we in-
troduce several ways of aggregating cardinal conflicts (Bo-
yarski et al. 2015) among agents. CBS with such h-values
is called ICBS plus h (ICBS-h). It improves upon CBS in
the same way that A* improves upon Dijkstra’s algorithm.
In our experiments, it outperforms CBS and ICBS by up to
a factor of five.

2 Conflict-Based Search (CBS)
CBS has two levels. The high level of CBS searches the bi-
nary constraint tree (CT). Each node N ∈ CT contains: (1)
a set of constraints imposed on the agents (N.constraints),
where a constraint imposed on agent ai is a tuple 〈ai, v, t〉,
meaning that agent ai is prohibited from occupying vertex v
at time step t; (2) a single solution (N.solution) that satis-
fies all constraints; and (3) the cost of solution N.solution
(N.cost), that is, the sum of the path costs of all agents. The
root node contains an empty set of constraints. The high
level performs a best-first search on the CT, ordering the
nodes according to their costs. Ties are broken in favor of
nodes whose solutions have fewer conflicts.

Generating a node in the CT. Given a node N , the low
level of CBS finds a shortest path for each agent that satisfies
all constraints in node N imposed on the agent, for example,
by using A* with h-values that are the true distances when
ignoring all constraints (Sharon et al. 2015).

Expanding a node in the CT. Once CBS has chosen node
N for expansion, it checks the solution N.solution for con-
flicts. If it is conflict-free, then node N is a goal node and
CBS returns its solution. Otherwise, CBS splits node N on
one of the conflicts 〈ai, aj , v, t〉 as follows. In any conflict-
free solution, at most one of the conflicting agents ai and aj
can occupy vertex v at time step t. Therefore, at least one of
the constraints 〈ai, v, t〉 or 〈aj , v, t〉 must be satisfied. Con-
sequently, CBS splits node N by generating two children
of node N , each with a set of constraints that adds one of

Figure 1: (I) A MAPF instance. (II) Its CT.

these two constraints to the set N.constraints. Thus, CBS
imposes an additional constraint on only one agent for each
child and thus has to re-plan the path of only that agent.

Figure 1(I) shows an example of a two-agent MAPF in-
stance. Each agent (mouse) must plan a path to its respec-
tive goal location (piece of cheese). Figure 1(II) shows the
corresponding CT. Its root node R contains an empty set
of constraints, and the low level of CBS finds the shortest
path 〈S1, A1, D,G1〉 of length 3 for agent 1 and the short-
est path 〈S2, B1, D,G2〉 of length 3 for agent 2. Thus, the
cost of the root node is R.cost = 3 + 3 = 6. The solu-
tion of the root node has conflict 〈1, 2, D, 2〉 since agents 1
and 2 both occupy vertex D at time step 2. Consequently,
CBS splits the root node. The new left child U (right child
V) of the root node adds the constraint 〈1, D, 2〉 (〈2, D, 2〉).
In node U , the low level of CBS finds the new shortest
path 〈S1, A1, A1, D,G1〉 of length 4 (that includes a wait
action) for agent 1, while the shortest path of agent 2 is
identical to the one in the root node since no new con-
straints are imposed on agent 2. Thus, the cost of node U
is U.cost = 4 + 3 = 7. Since the solution of node U is
conflict-free, it is a goal node and CBS returns its solution.

2.1 Improved CBS (ICBS)
CBS arbitrarily chooses conflicts to split and arbitrarily
chooses paths in the low-level. However, poor choices can
significantly increase the size of its CT and thus its runtime.
Improved CBS (ICBS) (Boyarski et al. 2015) addresses this
issue with two improvements to CBS.

Improvement 1: Splitting on cardinal conflicts. ICBS
classifies conflicts into three types. A conflict C is cardinal
iff, when CBS uses the conflict to split node N , the cost of
each of the two resulting children of node N is larger than
the cost of node N . Conflict C is semi-cardinal iff the cost of
one child is larger than the cost of N and the cost of the other
child is equal to the cost of N . Finally, conflict C is non-
cardinal iff the cost of each of the two children is equal to
the cost of node N . For example, in Figure 1(I), the conflict
〈1, 2, D, 2〉 is cardinal for the root node since the costs of
nodes U and V are both 7. If the dotted lines are added, then
the conflict becomes semi-cardinal since the cost of node V
remains 7 while the cost of node U becomes 6 since now a
shortest path of length 3 via location X exists for agent 1.

ICBS must first choose a cardinal conflict (if one exists)
when splitting a node N . The costs of both children of N
are then larger than the cost N.cost of node N , and the best-
first search of the high level of CBS thus expands some other

unexpanded node with cost N.cost next (if available) rather
than nodes in the CT subtree rooted at N . This can result in
smaller CTs and thus make the search more efficient.

Improvement 2: Bypassing conflicts. When ICBS has to
choose a semi-cardinal or non-cardinal conflict when split-
ting a node N , it can sometimes modify one of the paths in
the solution of node N to make the conflict disappear with-
out splitting the node. If, when splitting node N , one of the
solutions of the resulting children of node N includes an al-
ternative path for an agent with the same cost as the original
path but without the conflict and with fewer conflicts over-
all, then this path replaces the path of the agent in node N
and the node is not split. This can result in smaller CTs and
thus make the search more efficient.

3 ICBS-h
The best-first search of the high level of all existing CBS
variants uses only the cost of a CT node as its priority. This
value can be considered to be the g-value of the node. We
want to add an admissible (that is, non-overestimating) h-
value to its priority to make it more informed, resulting in
ICBS with heuristics or, in short, ICBS plus h (ICBS-h). Our
idea is simple: If the solution of a node N contains one or
more cardinal conflicts, then an h-value of one is admissible
for node N because the cost of any of its descendants in the
CT with a conflict-free solution is at least N.cost + 1. The
reason is that the paths in their solutions cannot be shorter
than the ones in the solution of node N since the same or
more constraints are imposed on the agents, and the length
of the path of at least one of the conflicting agents has to in-
crease by at least one. However, if the solution of a node
contains x cardinal conflicts, then an h-value of x is not
necessarily admissible for the node, which is why current
CBS variants use the number of conflicts only to break ties
among nodes with the same priority. We now show sev-
eral ways to calculate admissible h-values by aggregating
cardinal conflicts among agents. We use a conflict graph
GCF = (VCF , ECF) of node N . Each vertex vi ∈ VCF

corresponds to an agent ai that is involved in at least one
cardinal conflict. Each edge e = (vi, vj) ∈ ECF expresses
that there is at least one cardinal conflict between agents
ai and aj . Similar conflict graphs were used in the con-
text of heuristic search for sliding tile puzzles (Felner, Korf,
and Hanan 2004) and cost-optimal planning (Pommerening,
Röger, and Helmert 2013).

3.1 Disjoint Cardinal Conflicts
Disjoint cardinal conflicts are cardinal conflicts between dis-
joint pairs of agents. If the solution of a node N contains x
disjoint cardinal conflicts, then h = x is admissible for node
N since the length of the path of at least one agent of each
agent pair has to increase by at least one. Thus, we can use
the size of a matching (that is, a set of edges without com-
mon vertices) in the conflict graph of node N as its admissi-
ble h-value. ICBS-h1 finds a greedy matching as follows: It
repeatedly chooses an arbitrary edge (representing a cardinal
conflict) in the conflict graph, increases the h-value of node
N by one and then deletes all edges that are incident on both

(a) (b)

Obs
Runtime (ms) Expanded Nodes

CBS ICBS ICBS-h1 ICBS-h4 CBS ICBS ICBS-h1 ICBS-h4

10% 2,771 78 62 63 5,306 143 108 107
15% 2,264 1,070 561 386 4,263 552 264 205
20% 8,940 1,367 837 764 18,752 1,195 700 657
25% 95,920 10,650 3,771 3,215 169,000 11,232 4,568 4,030
30% 142,825 21,773 6,578 6,580 262,320 20,186 7,896 7,767
35% 113,673 20,276 4,539 3,582 223,764 25,666 6,818 5,003

(c)

Figure 2: Experimental results on 8× 8 grids.

vertices of the chosen edge from the conflict graph, until no
edge remains. ICBS-h2 finds a maximum matching in time
O(

√
|VCF ||ECF |) (Peterson and Loui 1988) to improve the

h-values. A maximum matching takes more time to compute
but can potentially result in more informed h-values.

3.2 Minimum Vertex Cover of the Conflict Graph
The length of the path of at least one agent of each conflict-
ing agent pair in a cardinal conflict has to increase by at least
one. Thus, we can use the size of a minimum vertex cover
(that is, a set of vertices such that each edge is incident on
at least one vertex in the set) of the conflict graph of node
N as its admissible h-value (Felner, Korf, and Hanan 2004;
Pommerening, Röger, and Helmert 2013). Finding a mini-
mum vertex cover is NP-hard (Xu et al. 2018). ICBS-h3 thus
greedily determines a lower bound on the size of a minimum
vertex cover. Finally, ICBS-h4 finds a minimum vertex cover
as follows: When CBS generates a node N in the CT, it re-
plans the path of only one agent. Consequently, only edges
incident on the vertex corresponding to this agent can ap-
pear in or disappear from the conflict graph. In the former
(latter) case, the size of the minimum vertex cover and thus
the h-value of node N increase (decrease) by at most one.
The resulting h-values are thus consistent. This property can
be exploited to calculate the h-value of node N with an algo-
rithm that determines in time O(2qn) whether a given graph
with n vertices has a vertex cover of size q (Downey and
Fellows 1995), by executing it at most twice (namely for
q = h − 1 and, if that is unsuccessful and h < k − 1, also
for q = h, where h is the h-value of the parent of node N).
Note that k − 1 is an upper bound on the h-values since the
size of the minimum vertex cover of the conflict graph (with
at most k vertices) is at most k − 1.

4 Experimental Results
We experimented with CBS, ICBS and all four variants of
ICBS-h. In practice, the different heuristics performed rel-
atively similarly and we only provide results for ICBS-h1

and ICBS-h4, which are the weakest and strongest among
the four. Our code is written in C#, and our experiments are
conducted on a 2.80 GHz Intel core i7-7700 laptop with 8
GB RAM. We set a runtime limit of 5 minutes, as used be-
fore (Sharon et al. 2012a; 2015).

Experiment 1. We experimented with 10 agents on 4-
neighbor 8 × 8 grids with 10% to 35% randomly-placed
obstacles (Figure 2(a)). Figure 2(b) shows the success rate
(that is, percentage of instances solved within the runtime

limit) out of 100 random instances. CBS performs worst
since it essentially uses zero h-values. ICBS had already
been shown to significantly outperform CBS (Boyarski et al.
2015), and this trend is confirmed here. In a sense, ICBS is
similar to ICBS-h with h-values that are one for nodes with
cardinal conflicts and zero otherwise. ICBS-h1 and ICBS-
h4 perform even better since they use even larger h-values.
ICBS-h4 performs best even though it solves the NP-hard
minimum vertex cover problem repeatedly. A similar phe-
nomenon was reported by Felner, Korf, and Hanan (2004)
and can be explained here with the conflict graph being
sparse. Figure 2(c) shows the runtime and number of ex-
panded nodes. The numbers for the three ICBS variants are
averaged over the instances solved by all three of them while
the numbers for CBS are averaged over only the smaller
number of instances solved by it (and thus would be much
larger if the same instances had been used in both cases). The
trends are similar as for the success rate. ICBS-h4 improves
the runtime and number of expanded nodes by a factor of up
to 5 over ICBS.

Experiment 2. We repeated Experiment 1 on a 4-
neighbor warehouse grid (Figure 3(a)) and on the stan-
dard 4-neighbor Dragon Age: Origin computer game grid
BRC202d (Sturtevant 2012) (Figure 3(d)). Figures 3(b,c)
and 3(e,f) show similar trends as for Experiment 1. ICBS-h4

now improves the runtime and number of expanded nodes
only by a factor of up to 2-3 over ICBS, which can be ex-
plained with the environments being less congested.

Experiment 3. To show the potential of adding heuris-
tics when problems scale up Table 1 shows the number of
conflicts, the number of cardinal conflicts and the h-value of
the root node calculated by ICBS-h1 and ICBS-h4 for the in-
stances used so far plus 100 instances for 4-neighbor 15×15
grids with 10% obstacles. The number of cardinal conflicts
and thus the h-values and the importance of using ICBS-h
increase with the obstacle and agent densities and thus the
difficulty of MAPF instances. For example, the h-value of
the root node on 15 × 15 grids with 100 agents is about 16
on average for ICBS-h4, allowing it to prune many nodes
that areexpanded by CBS and/or ICBS.

5 Possible Slowdown
Depending on tie breaking, A* with admissible h-values can
expand more nodes than with zero h-values if the admissi-
ble h-values of some non-goal nodes are zero. Such zero h-
values for non-goal nodes must exist if zero-cost edges are
allowed and are connected to the goal.

(a)
(b)

k
Runtime (ms) Expanded Nodes

CBS ICBS ICBS-h1 ICBS-h4 CBS ICBS ICBS-h1 ICBS-h4

4 2.43 2.17 1.66 1.69 4.32 3.36 2.67 2.63
6 45 24 14 14 62 31 18 17
8 6,047 428 242 232 6,957 440 247 242

10 31,581 19,563 11,364 11,363 35,014 16,682 10,225 10,027
12 60,490 41,670 26,777 26,347 69,254 35,873 23,759 23,486
14 - 100,729 66,619 66,205 - 78,911 53,515 53,125

(c)

(d) (e)

k
Runtime (ms) Expanded Nodes

CBS ICBS ICBS-h1 ICBS-h4 CBS ICBS ICBS-h1 ICBS-h4

20 25 25 24 24 2.37 1.74 1.70 1.70
40 5,080 153 120 120 258 9.39 7.71 7.70
60 19,609 717 383 379 1,070 26 17 17
80 59,775 8,807 3,953 4,173 2,922 324 156 156

100 23,852 14,649 8,799 8,983 873 361 203 200
120 25,485 43,996 16,953 17,630 976 984 431 429

(f)

Figure 3: Experimental results on a warehouse grid (top) and a computer game grid (bottom).

All Cardinal
h1 h4

All Cardinal
h1 h4Conflicts Conflicts Conflicts Conflicts

Obs 8x8 Grids k Warehouse Grid
10% 6.36 1.01 0.74 0.76 4 4.34 1.33 0.41 0.45
15% 7.83 1.54 0.97 1.00 6 11.08 3.60 0.93 1.01
20% 8.95 3.84 1.78 1.95 8 18.09 5.59 1.45 1.55
25% 12.41 7.31 2.39 2.78 10 34.39 12.74 1.99 2.32
30% 14.12 9.33 2.76 3.33 12 52.93 16.69 2.42 2.78
35% 17.39 14.64 3.31 4.22 14 66.53 21.26 3.18 3.74
k 15x15 Grids k Computer Game Grid
20 16.85 1.48 1.03 1.06 20 4.69 0.14 0.12 0.12
40 68.81 6.26 3.54 3.82 40 13.56 0.71 0.51 0.51
60 154.69 13.65 6.65 7.17 60 29.62 1.74 1.05 1.06
80 269.52 22.77 10.07 11.14 80 62.78 3.15 1.92 1.96

100 415.20 36.77 14.40 16.03 100 84.41 5.83 2.67 2.73

Table 1: Number of conflicts and h-value of root node.

Figure 4: ICBS versus ICBS-h.

The CT contains zero-cost edges in case some of its nodes
were split based on semi-cardinal or non-cardinal conflicts.
Admissible h-values of such non-goal nodes have to be zero
in case they are connected to goal nodes via one or more
zero-cost edges. Thus, ICBS-h can expand more nodes than
CBS. Figure 4(left) shows an example CT. The expressions
inside the nodes are the sums of their g-values and h-values.
Nodes G1 and G2 are goal nodes. CBS first expands node
S. It then expands node B since it has a smaller g-value (and
thus cost and priority) than node A. Finally, it expands node
G1 (at which point it stops) since it has the same g-value as

node A but a smaller number of conflicts (since the solutions
in goal nodes are conflict-free while the ones in non-goal
nodes are not). ICBS-h first expands node S as well. It then
expands node A if it has a smaller number of conflicts than
node B since it has the same sum of g-value and h-value
(and thus priority) as node B. (It would also expand node A
in case it broke ties in favor of nodes with smaller h-values.)
It can then expand the entire CT subtree rooted at node A
and finally node G2 (at which point it stops). In this case,
ICBS-h expands more nodes than CBS. If the h-values of
non-goal nodes were strictly larger than zero, ICBS-h would
avoid this issue since it would expand node B (instead of
node A) and finally node G1 (at which point it stops).

In our experiments, ICBS-h expanded more nodes than
ICBS for fewer than 5% of the instances, and these cases
do not significantly contribute to the average number of ex-
panded nodes. Figure 4(right) shows the ratio of the number
of expanded nodes by ICBS-h4 and ICBS (as a function of
the number of expanded nodes by ICBS) on the instances
of 4-neighbor 8 × 8 grids that were solved by ICBS. ICBS
expanded fewer nodes than ICBS-h4 for only 22 out of 447
instances.

6 Conclusions and Future Research
We have provided first evidence that admissible h-values are
beneficial for CBS. There are several possible directions for
future research.

Direction 1. It is challenging to derive h-values for Meta-
Agent CBS (MA-CBS) (Sharon et al. 2012b), which is a
variant of CBS that can merge two conflicting agents into
a meta-agent instead of using their conflict to split a node.
MA-CBS treats a meta-agent as a single composite agent
and reasons only about conflicts among meta-agents, which
complicates the aggregation of cardinal conflicts among the
individual agents that form meta-agents.

Direction 2. It might be possible to use sophisticated
h-values for cost-optimal planning to develop even more
informed h-values for CBS, such as linear programming-
based h-values (Pommerening et al. 2015).

7 Acknowledgments
The research at Ben-Gurion University was supported by
the Israel Ministry of Science and the Czech Ministry of
Education and by Israel Science Foundation grant 844/17.
The research at the University of Southern California was
supported by National Science Foundation grants 1724392,
1409987 and 1319966. The views and conclusions con-
tained in this document are those of the authors and should
not be interpreted as representing the official policies, either
expressed or implied, of the sponsoring organizations, agen-
cies or the U.S. government.

References
Barer, M.; Sharon, G.; Stern, R.; and Felner, A. 2014. Sub-
optimal variants of the conflict-based search algorithm for
the multi-agent pathfinding problem. In Proceedings of the
Annual Symposium on Combinatorial Search.
Boyarski, E.; Felner, A.; Stern, R.; Sharon, G.; Tolpin, D.;
Betzalel, O.; and Shimony, S. 2015. ICBS: Improved
conflict-based search algorithm for multi-agent pathfinding.
In Proceedings of the International Joint Conference on Ar-
tificial Intelligence, 740–746.
Cohen, L.; Uras, T.; Kumar, S.; Xu, H.; Ayanian, N.; and
Koenig, S. 2016. Improved solvers for bounded-suboptimal
multi-agent path finding. In Proceedings of the International
Joint Conference on Artificial Intelligence, 3067–3074.
Cohen, L.; Uras, T.; and Koenig, S. 2015. Feasibility study:
Using highways for bounded-suboptimal multi-agent path
finding. In Proceedings of the Symposium on Combinato-
rial Search, 2–8.
Downey, R., and Fellows, M. 1995. Parameterized compu-
tational feasibility. In Feasible Mathematics II, 219–244.
Felner, A.; Stern, R.; Shimony, S.; Boyarski, E.; Goldenberg,
M.; Sharon, G.; Sturtevant, N.; Wagner, G.; and Surynek,
P. 2017. Search-based optimal solvers for the multi-agent
pathfinding problem: Summary and challenges. In Proceed-
ings of the Annual Symposium on Combinatorial Search,
20–37.
Felner, A.; Korf, R. E.; and Hanan, S. 2004. Additive pat-
tern database heuristics. Journal of Artificial Intelligence
Research 22:279–318.
Hoenig, W.; Kumar, S.; Ma, H.; Koenig, S.; and Ayanian, N.
2016. Formation change for robot groups in occluded envi-
ronments. In Proceedings of the IEEE International Confer-
ence on Intelligent Robots and Systems, 4836–4842.
Hönig, W.; Kumar, S.; Cohen, L.; Ma, H.; Xu, H.; Ayanian,
N.; and Koenig, S. 2016. Multi-agent path finding with
kinematic constraints. In Proceedings of the International
Conference on Automated Planning and Scheduling, 477–
485.
Ma, H., and Koenig, S. 2017. AI buzzwords explained:
Multi-agent path finding (MAPF). AI Matters 3(3):15–19.
Ma, H.; Koenig, S.; Ayanian, N.; Cohen, L.; Hoenig, W.; Ku-
mar, S.; Uras, T.; Xu, H.; Tovey, C.; and Sharon, G. 2016a.
Overview: Generalizations of multi-agent path finding to

real-world scenarios. In Proceedings of the IJCAI-16 Work-
shop on Multi-Agent Path Finding.
Ma, H.; Tovey, C.; Sharon, G.; Kumar, S.; and Koenig,
S. 2016b. Multi-agent path finding with payload transfers
and the package-exchange robot-routing problem. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
3166–3173.
Ma, H.; Kumar, S.; and Koenig, S. 2017. Multi-agent path
finding with delay probabilities. In Proceedings of the AAAI
Conference on Artificial Intelligence, 3605–3612.
Peterson, P., and Loui, M. 1988. The general maximum
matching algorithm of Micali and Vazirani. Algorithmica
3(1–4):511–533.
Pommerening, F.; Röger, G.; Helmert, M.; and Bonet, B.
2015. Heuristics for cost-optimal classical planning based
on linear programming. In Proceedings of the International
Joint Conference on Artificial Intelligence, 4303–4309.
Pommerening, F.; Röger, G.; and Helmert, M. 2013. Getting
the most out of pattern databases for classical planning. In
Proceedings of the International Joint Conference on Artifi-
cial Intelligence, 2357–2364.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. 2012a.
Conflict-based search for optimal multi-agent path finding.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence, 563–569.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. 2012b.
Meta-agent conflict-based search for optimal multi-agent
path finding. In Proceedings of the Annual Symposium on
Combinatorial Search.
Sharon, G.; Stern, R.; Goldenberg, M.; and Felner, A. 2013.
The increasing cost tree search for optimal multi-agent
pathfinding. Artificial Intelligence 195:470–495.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. 2015.
Conflict-based search for optimal multi-agent pathfinding.
Artificial Intelligence 219:40–66.
Standley, T., and Korf, R. 2011. Complete algorithms for
cooperative pathfinding problems. In Proceedings of the In-
ternational Joint Conference on Artificial Intelligence, 668–
673.
Standley, T. 2010. Finding optimal solutions to cooperative
pathfinding problems. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 173–178.
Sturtevant, N. 2012. Benchmarks for grid-based pathfind-
ing. IEEE Transactions on Computational Intelligence and
AI in Games 4(2):144–148.
Xu, H.; Sun, K.; Koenig, S.; and Kumar, S. 2018. A warn-
ing propagation-based linear-time-and-space algorithm for
the minimum vertex cover problem on giant graphs. In Pro-
ceedings of the International Conference on the Integration
of Constraint Programming, Artificial Intelligence, and Op-
erations Research.
Yu, J., and LaValle, S. 2013. Structure and intractability
of optimal multi-robot path planning on graphs. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
1444–1449.

