
Using FastMap to Solve Graph Problems in a Euclidean Space ∗

Jiaoyang Li
CS Department

Univ. of Southern California
jiaoyanl@usc.edu

Ariel Felner
SISE Department

Ben-Gurion University
felner@bgu.ac.il

Sven Koenig
CS Department

Univ. of Southern California
skoenig@usc.edu

T. K. Satish Kumar
CS Department

Univ. of Southern California
tkskwork@gmail.com

Abstract

It is well known that many graph problems, like the Trav-
eling Salesman Problem, are easier to solve in a Euclidean
space. This motivates the idea of quickly preprocessing a
given graph by embedding it in a Euclidean space to solve
graph problems efficiently. In this paper, we study a near-
linear time algorithm, called FastMap, that embeds a given
non-negative edge-weighted undirected graph in a Euclidean
space and approximately preserves the pairwise shortest path
distances between vertices. The Euclidean space can then be
used either for heuristic guidance of A* (as suggested previ-
ously) or for geometric interpretations that facilitate the ap-
plication of techniques from analytical geometry. We present
a new variant of FastMap and compare it with the original
variant theoretically and empirically. We demonstrate its use-
fulness for solving a path-finding and a multi-agent meeting
problem.

1 Introduction
Graphs discussed in this paper are non-negative edge-
weighted undirected graphs. Many graph problems on such
graphs have variants that are also studied in a Euclidean
space. For example, the Traveling Salesman Problem (TSP)
can be posed on a graph or in a Euclidean space (i.e., find-
ing a minimum cost cycle that goes through each vertex on
the graph or each point in the Euclidean space exactly once).
The cost between two vertices on the graph is the graph dis-
tance (= the length of the shortest path) between them, while
the cost between two points in the Euclidean space is the Eu-
clidean distance (= the length of the line segment) between
them. Both variants of the TSP are NP-hard to solve opti-
mally. However, the TSP on a graph is NP-hard to approx-
imate within any polynomial factor (Cormen 2009), while
the TSP in a Euclidean space has a polynomial-time approx-
imation scheme (Arora 1998).

The properties of a Euclidean space can be leveraged for
computational benefits. For example, a Euclidean space is

∗The research at the University of Southern California was
supported by the National Science Foundation (NSF) under grant
numbers 1724392, 1409987, 1817189 and 1837779. The research
was also supported by the United States-Israel Binational Science
Foundation (BSF) under grant number 2017692.
Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Shows an example of a maze structure interpreted
as an undirected graph with unit cost edges and embedded
in a 3D Euclidean space using FastMap. The blue line shows
the shortest path between a pair of vertices.

a metric space in which the triangle inequality on distances
holds. In addition, in a Euclidean space, geometric objects
(like straight lines, angles and bisectors) are well defined.
Our ability to conceptualize these objects facilitates human
intuition in the design of clever algorithms. These obser-
vations motivate the idea of quickly preprocessing a given
graph and embedding it in a Euclidean space to solve graph
problems efficiently. Although it may not necessarily close
the gap between known negative results for graph problems
and positive results for their Euclidean variants, it could still
be useful for heuristic search or the design of practical ap-
proximation algorithms for graph problems.

Therefore, we study a near-linear time algorithm, called
FastMap, that embeds a given graph in a Euclidean space
and approximately preserves the pairwise the graph dis-
tances between vertices, that is, the graph distances between
any two vertices are similar to the Euclidean distances be-
tween their corresponding points. Figure 1 shows an ex-
ample of a maze structure interpreted as a graph with unit
cost edges and embedded in a 3D Euclidean space using
FastMap. The efficiency and effectiveness of FastMap, com-
bined with nearest-neighbor algorithms, such as Locality
Sensitive Hashing (Datar et al. 2004), can be used to estab-
lish a framework that allows one to quickly switch between
the original graph interpretation and the new geometric in-
terpretation of graph problems. We present a new variant

of FastMap and compare it with the original variant theo-
retically and empirically. We demonstrate its usefulness for
solving a path-finding and a multi-agent meeting problem.

2 Background
FastMap (Faloutsos and Lin 1995) was introduced in the
Data Mining community for automatically generating Eu-
clidean embeddings of abstract objects. It gets as input a
complete graph G = (V,E), where each vertex vi ∈ V
represents an abstract object Oi, and each edge (vi, vj) ∈ E
with weight D(Oi, Oj) represents the distance between ob-
jects Oi and Oj . A Euclidean embedding assigns a K-
dimensional point pi ∈ RK to each object Oi. A good
Euclidean embedding is one in which the Euclidean dis-
tance between any two points pi and pj as given by
their L1 or L2 distance closely approximates D(Oi, Oj).
We refer to χL1

ij =
∑K

r=1 |[pi]r − [pj]r| and χL2
ij =√∑K

r=1([pi]r − [pj]r)2 as the L1 and L2 distances, respec-
tively, between two points pi = ([pi]1, . . . , [pi]K) and pj =
([pj]1, . . . , [pj]K) in a K-dimensional Euclidean space.

FastMap creates a Euclidean embedding by first assum-
ing the existence of a very high dimensional embedding
and then carrying out dimensionality reduction to a user-
specified number of dimensions. We re-use the description
from (Cohen et al. 2018) in the following. In the very first
iteration, FastMap heuristically identifies the farthest pair
of objects Oa and Ob in linear time. Once Oa and Ob are
determined, every other object Oi defines a triangle with
sides of lengths dai = D(Oa, Oi), dab = D(Oa, Ob) and
dib = D(Oi, Ob) (Figure 2(a)). The sides of the triangle de-
fine its entire geometry, and the projection of Oi onto OaOb

is given by

xi = (d2ai + d2ab − d2ib)/(2dab). (1)

FastMap sets the first coordinate of pi, the embedding ofOi,
to xi. In the subsequentK−1 iterations, the same procedure
is followed for computing the remaining K − 1 coordinates
of each object. However, the distance function is adapted for
different iterations. For example, for the first iteration, the
coordinates of Oa and Ob are 0 and dab, respectively. Be-
cause these coordinates fully explain the graph distance be-
tween these two objects, from the second iteration onward,
the rest of pa and pb’s coordinates should be identical. In-
tuitively, this means that the second iteration should mimic
the first one on a hyperplane that is perpendicular to the line
OaOb (Figure 2(b)). Although the hyperplane is never con-
structed explicitly, its conceptualization implies that the dis-
tance function for the second iteration should be changed for
all i and j in the following way:

Dnew(O′i, O
′
j)

2 = D(Oi, Oj)
2 − (xi − xj)2. (2)

Here, O′i and O′j are the projections of Oi and Oj , respec-
tively, onto this hyperplane, and Dnew(·, ·) is the new dis-
tance function.

Cohen et al. (2018) extend FastMap to the shortest path-
finding problem on graphs. They present an L1 variant of
FastMap that builds a Euclidean embedding in near-linear

Oa Ob

Oi

dai dib

dab
xi

(a) The “cosine law” projection
in a triangle.

O′
i

O′
j

Oa

Ob

Oj

xj

Oi

xi

Dnew(·, ·)

xi − xj

(b) Projection onto a new hy-
perplane that is perpendicular to
line OaOb.

Figure 2: Illustrates how coordinates are computed and re-
cursion is carried out in FastMap, taken from (Cohen et al.
2018).

time, which can then be used to obtain heuristics for A*.
They prove that the heuristics are admissible and consistent.
Their admissibility guarantees that A* finds shortest paths,
while their consistency allows A* to avoid re-expansions of
search nodes as well.

There are many other approaches to embedding a graph
in a Euclidean space, such as (Ng and Zhang 2002; Shavitt
and Tankel 2004; Rayner, Bowling, and Sturtevant 2011).
However, most of them require solving a Semi-Definite Pro-
gram or a problem of similar time complexity. They require
at least cubic time (Rayner, Bowling, and Sturtevant 2011),
and it is therefore prohibitive to apply them to large graphs.

3 Variants of FastMap
In this section, we propose an L2 variant of FastMap that is
more akin to the Data Mining FastMap. We compare it to
the L1 variant theoretically and empirically.

3.1 L2 Variant of FastMap
Cohen et al. (2018) use L1 distances primarily to calculate
admissible and consistent heuristics, which are helpful for
finding optimal solutions efficiently with A*. In many appli-
cations, however, suboptimal solutions are sufficient. In such
cases, the Data Mining FastMap can be adapted directly to
creating an L2 variant of FastMap. Another motivating fac-
tor for the L2 variant of FastMap is the observation that the
straight-line distances of a Euclidean space are most natu-
rally defined as L2 distances and that it is easier to find good
solutions for many problems in computational geometry if
L2 distances are used.

Algorithm 1 shows the L2 variant of FastMap. K is the
maximum number of dimensions allowed in the Euclidean
embedding, and ε is the threshold that marks a point of di-
minishing returns when the graph distance between the far-
thest pair of vertices becomes negligible. dij represents the
graph distance between vertices vi and vj . In each iteration,
the algorithm identifies the farthest pair (va, vb) of vertices
in G heuristically in near-linear time (lines 2-9). Then, it
builds two shortest-path trees rooted at vertices va and vb

Algorithm 1: L2 variant of FastMap.
Input: G = (V,E), K and ε.
Output: pi ∈ Rr for all vi ∈ V .

1 for r = 1, . . . ,K do
2 Choose va ∈ V randomly and let vb = va;
3 for t = 1, . . . , C do // C is a constant.
4 {dai|vi ∈ V } ← ShortestPathTree(G, va);
5 vc ← argmaxvi{d2ai −

∑r−1
j=1([pa]j − [pi]j)

2};
6 if vc == vb then
7 Break;

8 else
9 vb ← va; va ← vc;

10 {dai|vi ∈ V } ← ShortestPathTree(G, va);
11 {dib|vi ∈ V } ← ShortestPathTree(G, vb);
12 d′ab ← d2ab −

∑r−1
j=1([pa]j − [pb]j)

2;
13 if d′ab < ε then
14 Break;

15 for each vi ∈ V do
16 d′ai ← d2ai −

∑r−1
j=1([pa]j − [pi]j)

2;
17 d′ib ← d2ib −

∑r−1
j=1([pi]j − [pb]j)

2;
18 [pi]r ← (d′ai + d′ab − d′ib)/(2

√
d′ab);

Figure 3: Shows an undirected graph with unit cost edges.
The L2 variant of FastMap embeds it in a 2D Euclidean
space with the coordinates shown in the figure. Vertices A
and B are picked as pivots during the first iteration, and ver-
tices C and D are picked as pivots during the second iter-
ation. The Euclidean distance between A and C is

√
5/2,

which is larger than their graph distance.

to yield all necessary graph distances (lines 10,11). The rth
coordinate [pi]r of each vertex vi is computed using Equa-
tion (1) (line 18). The pairwise graph distances are updated,
when necessary, by the update rule for Dnew(·, ·) in Equa-
tion (2) (lines 12, 16, 17). Although d′ab, d′ai and d′ib com-
puted on these lines can be negative, line 18 never computes
the square-root of a negative number because line 13 guar-
antees it to be positive.

3.2 Comparison of the L1 and L2 Variants
Unlike the L1 variant, the L2 variant of FastMap does not
produce admissible heuristics. This is illustrated in Figure 3.
Empirically, the two variants can be compared on the dis-
tortion of pairwise graph distances created by their embed-
dings. We measure distortion as follows: We first pick S
vertices sampled uniformly at random. We then compute
the graph distances dij between all possible S(S − 1)/2

pairs and compare them against χL1
ij and χL2

ij . More pre-
cisely, we use the Normalized Root Mean Square Deviation
(NRMSD) to standardize the data coming from graphs of
different sizes. The NRMSD is given by σ/d̄ where

σ =

√∑
1≤i<j≤S(dij − χij)2

S(S − 1)/2

d̄ =

∑
1≤i<j≤S dij

S(S − 1)/2
.

We use four types of graphs, namely game grids, maze
grids, random grids and general (weighted) graphs. In-
stances of the first three types are from (Sturtevant 2012),
and instances of the fourth type are from (Beasley 1990).
We use S = 1,000. Figure 4 shows some results of the com-
parison, i.e., one graph per type.

By definition, the Euclidean distances produced by both
the L1 and L2 variants of FastMap are non-decreasing in the
number of dimensions. In particular, the Euclidean distance
produced by the L1 variant is always smaller than the corre-
sponding graph distance and gets closer to it as the number
of dimensions increases. Therefore, all distortion curves of
the L1 variant in the four figures are monotonically decreas-
ing. However, the L2 variant can overestimate the graph dis-
tances when the number of dimensions is large. Therefore,
all distortion curves of the L2 variant in the four figures are
first decreasing and then increasing.

We observe that, in general, the L2 variant of FastMap has
lower distortion than the L1 variant when the number of di-
mensions is small. Intuitively, the L1 variant is constrained
to meet the requirement of admissibility and consistency,
while the L2 variant can focus on accuracy. However, with
an increasing number of dimensions, we observe that the
comparative performances of the L1 and L2 variants change
with the nature of the graph. On game grids and maze grids,
the L1 variant is marginally better than the L2 variant (be-
cause the L2 variant overestimates many graph distances in
such cases). On random grids and general graphs, the L2

variant can be significantly better than the L1 variant.

4 Applications
In this section, we present two application domains to il-
lustrate the power of FastMap, namely a path-finding and a
multi-agent meeting problem.

An optimal solution or any other point of interest in the
Euclidean space created by FastMap for a given graph may
not correspond to the coordinates of any vertex of that graph.
In such a case, we have to assign the point of interest to a ver-
tex in that graph with the closest coordinates. In this paper,
we use Locality Sensitive Hashing (LSH) (Datar et al. 2004),
specifically a software package from (Andoni et al. 2015),
for answering nearest neighbor queries in only O(log |V |)
time. All algorithms were implemented in C++, and all ex-
periments were conducted on a 2.2 GHz Intel Core i5-5200
laptop with 4 GB RAM. On each graph, we used the same
50 random instances for each algorithm.

(a) |V |=17,953, |E|=33,781. (b) |V |=253,840, |E|=499,377. (c) |V |=104,950, |E|=132,954. (d) |V |=2,500, |E|=62,500.

Figure 4: Compares the distortion of pairwise graph distances created by the L1 and L2 variants of FastMap.

4.1 Path-Finding Problem
FastMap can be used to apply techniques from heuristic
search as well as analytical geometry to the path-finding
problem, where one has to find any path from a given start
vertex to a given goal vertex on a given graph.

We call our algorithm the path-splitting algorithm. Given
an input parameter k, the path-splitting algorithm recur-
sively divides the problem into two subproblems up to re-
cursion depth k. Each recursive step chooses an interme-
diate vertex and creates two subproblems, namely one be-
tween the start vertex and the intermediate vertex and an-
other one between the intermediate vertex and the goal ver-
tex. The intermediate vertex is the Euclidean midpoint cho-
sen with FastMap. At the bottom of the recursion tree, the
subproblems can be solved using A* with a choice of differ-
ent heuristics, including the Manhattan distance heuristics
and the FastMap heuristics themselves.

Algorithm 2 shows the pseudo-code of the path-splitting
algorithm. There are two possible stop conditions on line 2,
namely the depth of the recursion tree being k or vs and vg
being neighbors in the graph. The algorithm has a choice of
using either the L1 variant or the L2 variant of FastMap but
uses the same variant of FastMap on lines 3, 5 and 9. The
path-splitting algorithm with k = 0 reduces to A*.

Table 1 shows the empirical performance of the path-
splitting algorithm with k = 0 and k = 1. A* uses the
Manhattan distance heuristics. We set K = 10 and use the
variant of FastMap that has lower distortion on each graph.
The results on general graphs are omitted because the Man-
hattan distance heuristics are not defined on general graphs.
Here, path splitting (k = 1) is indeed beneficial since it re-
duces the number of A* node expansions at the expense of
only marginal deviations from the optimal costs. Although
the total runtime increases significantly with path splitting,
the overhead is associated with the LSH nearest-neighbor
queries and not with A*. In other words, improvements to
nearest-neighbor algorithms can be used as a black box to
directly benefit the path-splitting algorithm.

Figure 5 shows the empirical performance of the path
splitting algorithm with higher values of k. Here, too, path
splitting is useful with all choices of heuristics, and es-
pecially with weak heuristics such as the Manhattan dis-
tance heuristics. It is significantly easier to find low-quality
solutions than high-quality solutions. In other words, the
FastMap framework allows us to “build” paths more effi-
ciently than having to “search” for paths. The power of this

Algorithm 2: Path-splitting algorithm.
Input: G, vs and vg .
Output: Path.

1 Function Split(vs, vg)
2 if stop condition is met then
3 return A*(vs, vg);

4 ps ←FastMap(vs); pg ←FastMap(vg);
5 pm ← (ps + pg)/2;
6 vm ← NearestNeighborQuery(pm);
7 if vm == vs||vm == vg then
8 return A*(vs, vg);

9 Path1 ← Split(vs, vm); Path2← Split(vm, vg);
10 return Combine(Path1, Path2);

Table 1: Shows the empirical performance of the path-
splitting algorithm. PS(0) and PS(1) refer to the path-
splitting algorithm with k = 0 and k = 1, respectively.

FastMap Cost Runtime (ms) A* Nodes
Graph Variant K PS(0) PS(1) PS(0) PS(1) PS(0) PS(1)
game L1 10 242 246 1.30 23.87 5,527 3,228
maze L1 10 979 1,003 18.06 279.75 83,887 73,086

random L2 10 615 653 7.15 115.95 27,088 16,054

framework stems from FastMap being able to summarize the
essential information in a graph in a single precomputation
step and represent it in a Euclidean space.

4.2 Multi-Agent Meeting Problem
FastMap can be used to apply techniques from analytical
geometry to the multi-agent meeting problem, which arises
when cooperative agents have to meet at a common goal
vertex (Lanthier, Nussbaum, and Wang 2005). We formally
define it as a graph problem as follows: Given a graph
G = (V,E) and k vertices s1, . . . , sk ∈ V (the start vertices
of the agents), the multi-agent meeting problem is the prob-
lem of finding a vertex v∗ ∈ V (the common goal vertex)
such that

∑k
i=1D(si, v

∗) ≤
∑k

i=1D(si, v) for all v ∈ V ,
where D(si, v) is the graph distance between si and v.

The multi-agent meeting problem can be solved by build-
ing k shortest path trees rooted at s1, . . . , sk. The runtime of
this algorithm is k times that of Dijkstra’s algorithm (Dijk-
stra 1959; Fredman and Tarjan 1987), i.e., its time complex-
ity is O(k(|E| + |V | log |V |)). In a Euclidean space, how-
ever, the multi-agent meeting problem is referred to as the

Figure 5: Shows the empirical performance of the path-
splitting algorithm on the game grid. The number of di-
mensions K is 8. Each dot on a curve represents a different
depth k of the recursion tree, from 0 (left) to 10 (right). PS-
L1+A*-MH indicates that the L1 variant of FastMap and
A* with Manhattan distance heuristics are used. The other
names have similar interpretations.

Table 2: Shows the empirical performance of the L1 variant
of FastMap with K = 5 on instances of the multi-agent
meeting problem. k refers to the number of start vertices,
PrepTime refers to the preprocessing time of FastMap, and
FastMap Runtime refers to the time needed for solving the
Fermat-Weber problem plus answering the nearest-neighbor
query. All times are reported in ms.

Suboptimality (%) Prep- FastMap Runtime Dijkstra Runtime
Graph k=10 k=100 k=1000 Time k=10 k=100 k=1000 k=10 k=100 k=1000
game 3.00 1.32 0.98 795 22 22 27 22 187 1,841
maze 6.76 3.95 1.17 10,930 268 268 274 362 3,535 35,450

random 5.96 2.99 2.69 5,441 117 118 124 181 1,744 17,633
general 34.80 16.79 15.57 551 4 4 7 10 90 810

Fermat-Weber problem (Durier and Michelot 1985), which
is known to be NP-hard to solve optimally for L2 distances
but solvable in linear time for L1 distances with the Quick-
select algorithm (Hoare 1961).

The tractability of the Fermat-Weber problem for L1 dis-
tances inspires us to use the L1 variant of FastMap for pre-
processing the given graph of the multi-agent meeting prob-
lem. It first embeds the graph in a Euclidean space using
the L1 variant of FastMap. It then solves the Fermat-Weber
problem for L1 distances in polynomial time. Finally, it uses
LSH to map the optimal Euclidean solution back to a vertex
in the graph.

Table 2 shows the resulting empirical performance. Gen-
erally speaking, FastMap produces close-to-optimal solu-
tions. For game grids, maze grids and random grids, the
FastMap solutions are very close to optimal. On gen-
eral graphs, their suboptimality is at most about 35%.
FastMap has a huge advantage with respect to runtime. First,
FastMap demonstrates the power of precomputation on gen-
eral graphs, since it is generally two orders of magnitude
faster than Dijkstra’s algorithm in terms of runtime. In fact,
its time complexity is only Õ(k + log |V |) compared to
O(k(|E| + |V | log |V |)) for Dijkstra’s algorithm. Second,
FastMap also demonstrates the power of Euclidean embed-
dings, since its precomputation time plus its runtime is also
less than the runtime of Dijkstra’s algorithm when the num-
ber of agents is large. The table for theL2 variant of FastMap
(which uses Weiszfeld’s algorithm (Weiszfeld 1937) to find
the meeting point in the Euclidean space) is very similar to
Table 2 and is therefore not presented here.

5 Conclusions
In this paper, we presented a new variant of FastMap and
compared it with the original variant theoretically and em-
pirically. We presented two application domains to illustrate
the power of FastMap, namely the path-finding problem
and the multi-agent meeting problem. Overall, the FastMap
framework combined with Locality Sensitive Hashing al-
lowed us to solve graph problems using the more efficient
algorithms designed for solving their geometric counterparts
in a Euclidean space.

References
Andoni, A.; Indyk, P.; Laarhoven, T.; Razenshteyn, I.; and Schmidt,
L. 2015. Practical and optimal LSH for angular distance. In NIPS,
1225–1233.
Arora, S. 1998. Polynomial time approximation schemes for Eu-
clidean traveling salesman and other geometric problems. Journal
of the ACM 45(5):753–782.
Beasley, J. E. 1990. OR-library: distributing test problems by
electronic mail. Journal of the Operational Research Society
41(11):1069–1072.
Cohen, L.; Uras, T.; Jahangiri, S.; Arunasalam, A.; Koenig, S.; and
Kumar, T. K. S. 2018. The FastMap algorithm for shortest path
computations. In IJCAI, 1427–1433.
Cormen, T. H. 2009. Introduction to algorithms. MIT press.
Datar, M.; Immorlica, N.; Indyk, P.; and Mirrokni, V. S. 2004.
Locality-sensitive hashing scheme based on p-stable distributions.
In SoCG, 253–262.
Dijkstra, E. W. 1959. A note on two problems in connexion with
graphs. Numerische Mathematik 1(1):269–271.
Durier, R., and Michelot, C. 1985. Geometrical properties of
the Fermat-Weber problem. European Journal of Operational Re-
search 20(3):332–343.
Faloutsos, C., and Lin, K.-I. 1995. FastMap: A fast algorithm for
indexing, data-mining and visualization of traditional and multime-
dia datasets. In SIGMOD, 163–174.
Fredman, M., and Tarjan, R. 1987. Fibonacci heaps and their uses
in improved network optimization algorithms. Journal of the ACM
34(3):596–615.
Hoare, C. A. 1961. Algorithm 65: Find. Communications of the
ACM 4(7):321–322.
Lanthier, M. A.; Nussbaum, D.; and Wang, T. 2005. Calculating
the meeting point of scattered robots on weighted terrain surfaces.
In Australasian Symposium on Theory of Computing-Volume 41,
107–118.
Ng, T. S. E., and Zhang, H. 2002. Predicting internet network
distance with coordinates-based approaches. In INFOCOM, 170–
179.
Rayner, C.; Bowling, M.; and Sturtevant, N. 2011. Euclidean
heuristic optimization. In AAAI, 81–86.
Shavitt, Y., and Tankel, T. 2004. Big-bang simulation for embed-
ding network distances in Euclidean space. IEEE/ACM Transac-
tions on Networking 12(6):993–1006.
Sturtevant, N. 2012. Benchmarks for grid-based pathfinding.
Transactions on Computational Intelligence and AI in Games
4(2):144–148.
Weiszfeld, E. 1937. Sur le point pour lequel la somme des distances
de n points donnés est minimum. Tohoku Mathematical Journal,
First Series 43:355–386.

