
Lifelong Multi-Agent Path Finding in Large-Scale Warehouses
Extended Abstract

Jiaoyang Li
University of Southern California

jiaoyanl@usc.edu

Andrew Tinka
Scott Kiesel

Joseph W. Durham
Amazon Robotics

T. K. Satish Kumar
Sven Koenig

University of Southern California

ABSTRACT
Multi-Agent Path Finding (MAPF) is the problem of moving a team
of agents from their start locations to their goal locations without
collisions. We study the lifelong variant of MAPF where agents
are constantly engaged with new goal locations, such as in ware-
houses. We propose a new framework for solving lifelong MAPF by
decomposing the problem into a sequence of Windowed MAPF in-
stances, where a Windowed MAPF solver resolves collisions among
the paths of agents only within a finite time horizon and ignores
collisions beyond it. Our framework is particularly well suited to
generating pliable plans that adapt to continually arriving new
goal locations. We evaluate our framework with a variety of MAPF
solvers and show that it can produce high-quality solutions for up
to 1,000 agents, significantly outperforming existing methods.

KEYWORDS
Agent coordination; multi-agent path finding; multi-agent planning
ACM Reference Format:
Jiaoyang Li, Andrew Tinka, Scott Kiesel, Joseph W. Durham, T. K. Satish
Kumar, and Sven Koenig. 2020. Lifelong Multi-Agent Path Finding in Large-
Scale Warehouses. In Proc. of the 19th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2020), Auckland, New
Zealand, May 9–13, 2020, IFAAMAS, 3 pages.

1 INTRODUCTION
Multi-Agent Path Finding (MAPF) is the problem of moving a team
of agents in discrete timesteps on a graph from their start loca-
tions to their goal locations while avoiding collisions. MAPF has
numerous real-world applications, such as autonomous aircraft-
towing vehicles [9], office robots [13], video game characters [8],
and quadrotor swarms [3]. Today, in autonomous warehouses, mo-
bile robots already navigate autonomously to move inventory pods
or flat packages from one location to another [4, 15]. However,
MAPF is only the “one-shot” variant of the actual problem in many
real-world applications. Typically, after an agent reaches its goal lo-
cation, it does not stop and wait there forever. Instead, it is assigned
a new goal location and required to keep moving, which is referred
to as lifelong MAPF [7] and characterized by agents constantly be-
ing assigned new goal locations. In this paper, we assume that there
is a task assigner (outside of our path-planning system) that the
agents can request goal locations from during the operation of the

The research at the University of Southern California was supported by the National
Science Foundation (NSF) under grant numbers 1724392, 1409987, 1817189, and 1837779,
as well as a gift from Amazon.
Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

system. Our task is to plan collision-free paths that move all agents
to their goal locations and maximize the throughput, that is, the
average number of goal locations visited per timestep.

Existing methods for solving lifelong MAPF include (1) solving
it as a whole [10], (2) decomposing it into a sequence of MAPF
instances at every timestep where one replans paths for all agents [2,
14], and (3) decomposing it into a sequence of MAPF instances
where one plans new paths at every timestep for only the agents
with new goal locations [5, 7]. Method (1) needs to know all goal
locations a priori and has limited scalability. Method (2) can work
for an online setting and scales better than Method (1). However,
replanning for all agents at every timestep is time-consuming even
if one uses incremental search techniques. As a result, its scalability
is also limited. Method (3) scales to substantially more agents than
the first two methods but both the map and the MAPF model need
to have additional structure to guarantee the completeness. As a
result, it works only for specific classes of lifelong MAPF instances.
In addition, Methods (2) and (3) plan at every timestep, which may
not be practical since planning is time-consuming.

In this paper, we propose a new framework for solving lifelong
MAPF where we decompose lifelong MAPF into a sequence of
Windowed MAPF instances and replan once every h timesteps. A
Windowed MAPF instance is different from a MAPF instance in the
following ways: (1) it allows an agent to be assigned a sequence
of goal locations, and (2) collisions need to be resolved only for
the firstw timesteps (w ≥ h).1 The benefit of this decomposition is
two-fold. First, it keeps the agents continually engaged, avoiding
idle time, and increasing throughput. Second, it generates pliable
plans that adapt to continually arriving new goal locations. In fact,
methods that resolve all collisions within the entire time horizon
may often do so unnecessarily since the paths of the agents can
change as new goal locations arrive.

2 FRAMEWORK
Our framework has two parameters w and h (w ≥ h). w specifies
that the Windowed MAPF solver has to resolve collisions within a
time window ofw timesteps. h specifies that the Windowed MAPF
solver has to replan once every h timesteps.

In every Windowed MAPF episode, say, starting at timestep t ,
we first update the start location and the goal location sequence for
each agent. We set the start location of the agent to its location at
timestep t . Then, we calculate the distance d from the start location
to the first goal location plus the sum of the distances between
1Resolving collisions only within a window is not a new idea. Silver [12] has already
applied this idea to solving MAPF with prioritized planning. He refers to it as WHCA*
and empirically shows that, as the length of the window decreases, WHCA* runs faster
but also generates longer paths. In this paper, we showcase the benefits of applying
this idea to lifelong MAPF and other types of MAPF solvers.



(a) Fulfillment warehouse map. (b) Sorting center map.

Figure 1: Two maps. Black cells represent obstacles, which
the agents cannot traverse. Cells of other colors represent
empty locations, which the agents can traverse.

Table 1: Throughput and average runtimeper run in seconds.
Here, a run means a call to the (Windowed) MAPF solver.

Agents Holding endpoints Dummy paths Our framework
throughput runtime throughput runtime throughput runtime

60 2.17 0.01 2.19 0.02 2.33 0.33
100 3.33 0.02 3.41 0.05 3.56 2.04
140 4.35 0.04 4.50 0.17 4.55 7.78

consecutive future goal locations in the goal location sequence. d
being smaller than h indicates that the agent might finish visiting
all its goal locations and being idle before the next planning episode
starts at timestep t + h. To avoid this situation, the task assigner
continually assigns new goal locations to the agent until d ≥ h.
Once we get the start locations and the goal location sequences of
all agents, we call a Windowed MAPF solver to find paths for all
agents that are collision-free for the firstw timesteps and that move
them from their start locations through all their goal locations in
the order given by their goal location sequences. Finally, we move
the agents for h timesteps along the generated paths and remove
the visited goal locations from the goal location sequences.

In order to find a shortest path for an agent to move through
a sequence of goal locations, we propose a generalized variant
of Multi-Label A* [2] and use it as the single-agent pathfinding
algorithm for our Windowed MAPF solvers. Compared to A*, we
add an additional attribute label to each node N that indicates the
number of goal locations in the goal location sequence that the
corresponding path from the root node toN has already visited. The
label of the root node is 0. We increase the label of a node by one iff
its location is its next goal location. A node is a goal node iff its label
equals the cardinality of the goal location sequence. In addition, we
set the h-value of a node to the distance from its location to the next
goal location plus the sum of the distances between consecutive
future goal locations in the goal location sequence.

3 EMPIRICAL RESULTS
We evaluate our framework with various MAPF solvers imple-
mented in C++, namely, CA* [12] (incomplete and suboptimal),
PBS [6] (incomplete and suboptimal), ECBS [1] (complete and
bounded suboptimal) and CBS [11] (complete and optimal). For com-
parison, we also implemented two existing realizations of Method
(3), namely, holding endpoints [7] and reserving dummy paths [5].
We do not compare against Method (1) since it does not scale be-
yond 20 agents [10]. We do not compare against Method (2) since
its performance in dense environments (that have many obstacles

Table 2: Results of our framework using PBS, CA*, CBS, and
ECBS. For each algorithm, the top rows report the through-
put while the bottom rows report the average runtime per
run in seconds. “-” indicates that the runtime of the Win-
dowed MAPF solver exceeds 1 minute per run.

PBS
Agents 200 300 400 500 600 700 800 900 1000
w = 5 6.22 9.28 12.27 15.17 17.97 20.69 23.36 25.79 27.95
w = 10 6.27 9.36 12.41 15.43 18.38 21.19 23.94 26.44 28.77
w = 20 6.30 9.38 12.45 15.48 18.38 21.24 23.91 - -
w = ∞ 6.32 9.36 12.46 15.46 18.40 21.30 - - -
w = 5 0.13 0.31 0.61 1.12 1.87 3.01 4.73 7.30 10.97
w = 10 0.16 0.42 0.89 1.66 2.91 4.81 7.79 12.66 21.31
w = 20 0.22 0.61 1.36 2.71 5.11 9.28 17.46 - -
w = ∞ 0.28 0.80 1.83 3.84 7.63 16.16 - - -

CA* CBS ECBS
Agents 200 300 400 Agents 100 200 Agents 400 500 600
w = 5 6.17 9.12 - w = 5 3.17 - w = 5 12.03 14.79 17.28
w = ∞ 6.20 9.16 - w = ∞ - - w = ∞ 12.28 15.20 -
w = 5 0.21 1.07 - w = 5 0.14 - w = 5 1.27 2.37 4.22
w = ∞ 0.84 2.58 - w = ∞ - - w = ∞ 11.48 23.47 -

and many agents) is similar to that of our framework withw = ∞.
We simulate 5, 000 timesteps for each experiment. All experiments
were conducted on Amazon EC2 instances of type “m4.xlarge” with
16 GB memory.

We first use the map in Figure 1(a) from [5] to demonstrate
fulfillment warehouse applications. The initial locations of agents
are chosen uniformly at random from the orange cells, while the
task assigner chooses their goal locations uniformly at random
from the blue cells. This map satisfies the structure requirement of
Method (3), and we thus compare our framework with both existing
realizations of Method (3). For our method, we use a time horizon
ofw = 20 timesteps and replan every h = 5 timesteps. For the other
two methods, we replan at every timestep, as required by Method
(3). All methods use PBS as their MAPF solvers. Table 1 reports the
throughput and runtime of these methods. In terms of throughput,
our method outperforms the two existing realizations of Method
(3). In terms of runtime, however, our method is slower per run
because the competing methods usually replan for fewer than 5
agents. The disadvantages of these methods are that they need to
replan at every timestep, achieve a lower throughput, and are not
applicable to all maps.

We then use the map in Figure 1(b) to demonstrate sorting cen-
ter applications. Each agent is assigned green cells and blue cells
alternately. In particular, the task assigner chooses blue cells uni-
formly at random and chooses green cells that are closest to the
current locations of the agents. This map does not satisfy the struc-
ture requirement of Method (3). Table 2 reports the throughput
and runtime of our framework for different values ofw and h = 5
timesteps using PBS, CA*, CBS, and ECBS with a suboptimality
bound of 1.1. As expected, the value of w does not substantially
affect the throughput. In most cases, small value of w influences
the throughput by less than 1% compared to w = ∞. However,
the value ofw significantly affects the runtime. In all cases, small
value ofw speeds up our framework by up to a factor of 6 without
compromising the throughput.



REFERENCES
[1] Max Barer, Guni Sharon, Roni Stern, and Ariel Felner. 2014. Suboptimal Variants

of the Conflict-Based Search Algorithm for the Multi-Agent Pathfinding Problem.
In Proceedings of the 7th Annual Symposium on Combinatorial Search (SoCS).
19–27.

[2] Florian Grenouilleau, Willem-Jan van Hoeve, and John N. Hooker. 2019. A
Multi-Label A* Algorithm for Multi-Agent Pathfinding. In Proceedings of the
29th International Conference on Automated Planning and Scheduling (ICAPS).
181–185.

[3] Wolfgang Hönig, James A. Preiss, T. K. Satish Kumar, Gaurav S. Sukhatme,
and Nora Ayanian. 2018. Trajectory Planning for Quadrotor Swarms. IEEE
Transactions on Robotics 34, 4 (2018), 856–869.

[4] Ngai Meng Kou, Cheng Peng, HangMa, T. K. Satish Kumar, and Sven Koenig. 2020.
Idle Time Optimization for Target Assignment and Path Finding in Sortation
Centers. In Proceedings of the 34th AAAI Conference on Artificial Intelligence
(AAAI).

[5] Minghua Liu, Hang Ma, Jiaoyang Li, and Sven Koenig. 2019. Task and Path Plan-
ning for Multi-Agent Pickup and Delivery. In Proceedings of the 18th International
Conference on Autonomous Agents and MultiAgent Systems (AAMAS). 1152–1160.

[6] Hang Ma, Daniel Harabor, Peter J. Stuckey, Jiaoyang Li, and Sven Koenig. 2019.
Searching with Consistent Prioritization for Multi-Agent Path Finding. In Pro-
ceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI). 7643–7650.

[7] Hang Ma, Jiaoyang Li, T. K. Satish Kumar, and Sven Koenig. 2017. Lifelong
Multi-Agent Path Finding for Online Pickup and Delivery Tasks. In Proceedings of
the 16th International Conference on Autonomous Agents and MultiAgent Systems
(AAMAS). 837–845.

[8] Hang Ma, Jingxing Yang, Liron Cohen, T. K. Satish Kumar, and Sven Koenig.
2017. Feasibility Study: Moving Non-Homogeneous Teams in Congested Video

Game Environments. In Proceedings of the 13th AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment (AIIDE). 270–272.

[9] Robert Morris, Corina S. Pasareanu, Kasper Søe Luckow, Waqar Malik, Hang Ma,
T. K. Satish Kumar, and Sven Koenig. 2016. Planning, Scheduling and Monitor-
ing for Airport Surface Operations. In AAAI Workshop on Planning for Hybrid
Systems.

[10] Van Nguyen, Philipp Obermeier, Tran Cao Son, Torsten Schaub, and William
Yeoh. 2017. Generalized Target Assignment and Path Finding Using Answer
Set Programming. In Proceedings of the 26th International Joint Conference on
Artificial Intelligence (IJCAI). 1216–1223.

[11] Guni Sharon, Roni Stern, Ariel Felner, and Nathan R. Sturtevant. 2015. Conflict-
Based Search for Optimal Multi-Agent Pathfinding. Artificial Intelligence 219
(2015), 40–66.

[12] David Silver. 2005. Cooperative Pathfinding. In Proceedings of the 1st Artificial
Intelligence and Interactive Digital Entertainment Conference (AIIDE). 117–122.

[13] Manuela M. Veloso, Joydeep Biswas, Brian Coltin, and Stephanie Rosenthal. 2015.
CoBots: Robust Symbiotic Autonomous Mobile Service Robots. In Proceedings of
the 24th International Joint Conference on Artificial Intelligence (IJCAI). 4423–4429.

[14] Qian Wan, Chonglin Gu, Sankui Sun, Mengxia Chen, Hejiao Huang, and Xiaohua
Jia. 2018. Lifelong Multi-Agent Path Finding in a Dynamic Environment. In
Proceedings of the 15th International Conference on Control, Automation, Robotics
and Vision (ICARCV). 875–882.

[15] Peter R. Wurman, Raffaello D’Andrea, and Mick Mountz. 2007. Coordinating
Hundreds of Cooperative, Autonomous Vehicles in Warehouses. In Proceedings
of the 22nd AAAI Conference on Artificial Intelligence (AAAI). 1752–1760.


	Abstract
	1 Introduction
	2 Framework
	3 Empirical Results
	References

