
A Hierarchical Approach to Multi-Agent Path Finding

Han Zhang, Mingze Yao, Ziang Liu, Jiaoyang Li, Lucas Terr, Shao-Hung Chan,
T. K. Satish Kumar, Sven Koenig

University of Southern California
{zhan645, mingzeya, ziangliu, jiaoyanl, terr, shaohung}@usc.edu, tkskwork@gmail.com, skoenig@usc.edu

Abstract

The Multi-Agent Path Finding (MAPF) problem arises in
many real-world applications, ranging from automated ware-
housing to multi-drone delivery. Solving the MAPF prob-
lem optimally is NP-hard, and existing optimal and bounded-
suboptimal MAPF solvers thus usually do not scale to large
MAPF instances. Greedy MAPF solvers scale to large MAPF
instances, but their solution qualities are often bad. In this pa-
per, we therefore propose a novel MAPF solver, Hierarchical
Multi-Agent Path Planner (HMAPP), which creates a spatial
hierarchy by partitioning the environment into multiple re-
gions and decomposes a MAPF instance into smaller MAPF
sub-instances for each region. For each sub-instance, it uses
a bounded-suboptimal MAPF solver to solve it with good so-
lution quality. Our experimental results show that HMAPP
solves as large MAPF instances as greedy MAPF solvers
while achieving better solution qualities on various maps.

Introduction
The Multi-Agent Path Finding (MAPF) problem arises in
many real-world applications, including automated ware-
housing (Wurman, D’Andrea, and Mountz 2008; Li et al.
2020) and multi-drone delivery (Choudhury et al. 2020). In
the MAPF problem, each agent is required to move from a
start vertex to a goal vertex on an undirected graph while
avoiding conflicts with other agents. A conflict happens
when two agents stay at the same vertex or traverse the same
edge in opposite directions at the same time.

Two common objectives for the MAPF problem are
minimizing the sum of the path costs and minimizing
the makespan. Solving the MAPF problem optimally for
either objective is NP-hard (Yu and LaValle 2013; Ma
et al. 2016). Thus, existing optimal and bounded-suboptimal
MAPF solvers (Sharon et al. 2015; Barer et al. 2014) usu-
ally do not scale to large MAPF instances. Greedy MAPF
solvers (Silver 2005) are able to scale to large MAPF in-
stances, but their solution qualities are often bad.

Although planning can find MAPF solutions of good
quality for small MAPF instances, planning in small steps
from one vertex to another has the disadvantage that its run-
time can dramatically increase with the number of agents
and the size of the environment. In this paper, we approach
the MAPF problem from a rarely-pursued spatial-hierarchy
perspective. We propose a novel MAPF solver, Hierarchical

Multi-Agent Path Planner (HMAPP). In HMAPP, a high-
level planner generates a high-level plan for each agent that
moves the agent from one region to another, and each re-
gional planner subsequently refines the high-level plan to a
low-level path for the agent. Therefore, regional planners
can use existing MAPF techniques to find solutions with
good qualities while the total runtime of HMAPP is still rea-
sonable for large MAPF instances.

Our experimental results show that HMAPP solves as
large MAPF instances as greedy MAPF solvers while
achieving better solution qualities on various maps. The so-
lutions of HMAPP have makespans for large MAPF in-
stances that are about 50% smaller than the ones of the
spatial-hierarchical MAPF solver Ros-dmapf (Pianpak et al.
2019).

Related Work
Spatial hierarchies have been used for path planning (Botea,
Müller, and Schaeffer 2004; Pelechano and Fuentes 2016)
by partitioning a map into several regions, precomputing
and caching the optimal sub-paths that connect adjacent re-
gions and abstracting these sub-paths to edges of a smaller
abstract graph, that is then searched. These approaches do
not directly apply to MAPF since the cached sub-paths do
not take conflicts between agents into account and are thus
difficult to reuse for MAPF.

Hierarchies have also been used for multi-agent motion
planning (Kapadia et al. 2013; Ma et al. 2017), but these ap-
proaches do not use spatial hierarchies but rather planning
hierarchies that plan on different abstraction levels, such as
path and motion planning. HMAPP can be used for path
planning in such approaches.

Spatial hierarchies have not yet been used extensively
for MAPF. The Spatially Distributed Multi-Agent Planner
(SDP) (Wilt and Botea 2014) partitions a map into high-
and low-contention regions and uses different MAPF solvers
for regions of different types. Unlike HMAPP, SDP does
not partition the map into several regions in the absence of
high-contention regions and cannot solve MAPF instances
unless all start or goal vertices are in low-contention re-
gions. Ros-dmapf (Pianpak et al. 2019), like HMAPP, parti-
tions a map into several regions. Unlike HMAPP, Ros-dmapf
uses answer set programming for the regional planners and
has to synchronize the execution of the high-level plans of



all agents, causing agents that reach their next regions ear-
lier than other agents to wait unnecessarily for those other
agents, which impacts the solution quality negatively.

Preliminaries
In this section, we provide background material on MAPF,
the optimal MAPF solver Conflict-Based Search (CBS) and
the bounded-suboptimal MAPF solver Enhanced Conflict-
Based Search (ECBS).

MAPF
The MAPF problem is defined by an undirected graph G =
(V,E) and a set of m agents {a1 . . . am}. Each agent has
a start vertex si ∈ V and a goal vertex gi ∈ V . In each
timestep, an agent either moves to an adjacent vertex or
waits at its current vertex. Both move and wait actions have
unit cost unless the agent terminally waits at its goal vertex,
which has zero cost. A path of an agent is a sequence of
move and wait actions from its start vertex to its goal vertex.
A sub-path of an agent is a sequence of actions from one
vertex at a specific timestep to another vertex at a specific
timestep. The path cost of a path is the accumulated cost
of all actions in this path. A vertex conflict happens when
two agents stay at the same vertex simultaneously, and an
edge conflict happens when two agents traverse the same
edge in opposite directions simultaneously. A solution is a
set of conflict-free paths of all agents. The Sum of path Costs
(SoC) is the sum of the path costs of the paths of all agents,
and the makespan is the maximum path cost of the paths of
all agents. In this paper, we consider only graphs that are
four-neighbor grids (Stern et al. 2019). However, HMAPP
can be applied to any graph as long as a graph-partitioning
approach is provided for it.

CBS and ECBS
CBS (Sharon et al. 2015) is an optimal two-level MAPF
solver. On the high level, CBS maintains a Constraint Tree
(CT). Each CT node contains a set of constraints and a set of
paths, one for each agent, that satisfies all these constraints.
The cost of a CT node is the SoC or makespan of all these
paths, depending on the objective of the MAPF problem. On
the low level, for each CT node, CBS finds a path for each
agent that has the smallest path cost while satisfying all con-
straints of the CT node (but might conflict with the other
paths). When expanding a CT node, CBS returns a solution
if its paths are conflict-free. Otherwise, CBS picks a con-
flict, splits the CT node into two child CT nodes and adds a
constraint to each child CT node to prohibit either one or the
other of the two conflicting agents from using the conflicting
vertex or edge at the conflicting timestep. On the high level,
CBS expands nodes in a best-first order. Therefore, the paths
of the first expanded CT node with conflict-free paths form
an optimal solution.

ECBS(w) (Barer et al. 2014) is a bounded-suboptimal
MAPF solver based on CBS. Given suboptimality factor
w, ECBS(w) finds a w-suboptimal solution. The high- and
low-level search algorithms of ECBS are focal search (Pearl

Algorithm 1: HMAPP.
input: A MAPF instance.

1 initialize();
2 find HL plan();
3 T ← 0;
4 foreach region r ∈ R do
5 Pr.plan initial path();
6 end
7 while paths for all agents to their goal vertices have

not yet been found do
8 T ← next timestep when an agent is ready to

enter its next region;
9 foreach region r ∈ R do

10 A′ ← agents that are ready to enter r at
timestep T ;

11 if A′ is not empty then
12 Pr.replan(A

′);
13 end
14 end
15 foreach region r ∈ R do
16 if an agent is delayed to exit r at timestep T

then
17 Pr.replan(∅);
18 if Pr.replan failed to find a solution then
19 return failure;
20 end
21 end
22 end
23 end
24 return extract solution();

and Kim 1982) instead of best-first search. Unlike best-
first search, focal search maintains a FOCAL list, which
is a subset of the OPEN list of search nodes, and expands
nodes from the FOCAL list based on a user-provided tie-
breaking criterion. On the low-level, ECBS uses focal search
to find paths that have fewer conflicts with the paths of other
agents. On the high-level, ECBS uses focal search to expand
CT nodes that more likely lead to a conflict-free bounded-
suboptimal solution.

HMAPP
Algorithm 1 shows the pseudo-code of HMAPP. HMAPP
first partitions the vertices into regions. Let R denote the
set of all regions. For each pair of adjacent regions, HMAPP
finds pairs of adjacent vertices (one from each region), called
boundary pairs, and uses them to transfer agents between re-
gions. To simplify the interaction between regions, agents
are allowed to travel in only one direction through each
boundary pair. A high-level planner generates a high-level
plan for each agent (Line 2), which specifies the sequence
of regions that the agent should visit to reach its goal vertex.
When we describe HMAPP, we assume that the high-level
plan of each agent does not include each region more than
once so that each agent has at most one sub-path in each
region. However, this assumption is only for the ease of pre-



sentation. HMAPP allows the high-level plan of an agent to
include a region multiple times and maintains one sub-path
for each visit of the agent to the region.

For an agent ai that moves from region r to its next re-
gion r′, the regional planner Pr plans a sub-path for ai to a
boundary vertex v that is part of a boundary pair 〈v, v′〉 to
region r′. v (v′) is the determined exit (entry) vertex of ai
from r (to r′). The exit (entry) timestep of ai from r (to r′)
is the last timestep that ai is in r. Pr initially assumes that
ai immediately exits r once it has followed its sub-path in
r. However, the actual exit timestep is determined by the re-
gional planner Pr′ when Pr′ determines the entry timestep
and the sub-path for ai in r′, which must not be smaller than
the timestep when ai has followed its sub-path in r. Once
determined, the entry and exit timesteps and the entry and
exit vertices of agents can no longer be changed.

In the beginning of Algorithm 1, for each region r, Pr

plans a set of conflict-free sub-paths for all agents in the re-
gion (Lines 4-6). We say that agent ai is ready to enter (exit)
region r′ (r) at a timestep t iff (1) ai has followed its sub-
path in r at timestep t and (2) the exit timestep of ai from
r has not been determined yet. Inside the while loop (Lines
7-23), T is updated to the earliest timestep when an agent
is ready to enter its next region. HMAPP iterates over each
region r and invokes Pr to determine the entry timesteps for
agents that are ready to enter r at timestep T (Lines 9-14).
Let ai be such an agent. We say that ai is delayed to exit its
region iff its determined entry timestep is larger than T . Pr

might have to replan the sub-paths of all agents in r if such a
delay happens. HMAPP iterates over each region r that has a
delayed-to-exit agent and invokes Pr to replan the sub-paths
of all agents (Lines 15-22). Except for the initial planning,
each regional planner plans at most twice for each value of
T , once to take the ready-to-enter agents into account and
once to take the delayed-to-exit agents into account. When
replanning, each regional planner is allowed to modify the
entire sub-paths of its agents in the region (even the parts be-
fore timestep T ) as long as they obey the determined entry
and exit timesteps and the determined entry and exit vertices.
HMAPP repeats this procedure until it has found paths for
all agents to their goal vertices. Finally, HMAPP appends
the sub-paths in different regions and returns the obtained
paths as the solution (Line 24).

The resulting paths are conflict-free because (1) the sub-
paths inside each region are conflict-free and (2) no edge
conflict happens when an agent exits a region since the
movements within each boundary pair are in one direction
only. However, HMAPP is not a complete MAPF solver
since the sub-instances for the regions can be unsolvable
even if a solution for the MAPF instance exists. Limiting the
number of agents in each region may make HMAPP com-
plete, which we leave for future work.

HMAPP is a general algorithmic framework that can use
different approaches for graph partitioning, high-level plan-
ning and regional planning. In the following sections, we
describe how each of these components is implemented cur-
rently.

r2

r0 r1

r3
A

B

C

D

E

F

G

H

1 2 3 4 5 6 7 8

Figure 1: Shows an example of partitioning an 8 × 8 grid
into four regions ri (for i = 0, . . . 3), each with a different
color. Shaded areas are obstacles. Arrows between adjacent
vertices indicate boundary pairs and their movement direc-
tions.

Graph Partitioning and High-Level Planning

In this paper, we consider only MAPF instances on four-
neighbor grids (Stern et al. 2019), and HMAPP partitions the
grids into rectangular regions of similar sizes, determined
by parameters num row and num col, which specify the
numbers of regions in the vertical and horizontal directions,
respectively. If a region is not connected, then HMAPP par-
titions it further. HMAPP then iterates over each pair of adja-
cent regions, collects all pairs of adjacent vertices, one from
each each region, that have not yet been used in any bound-
ary pair and adds them to the set of boundary pairs. It as-
signs alternating directions to boundary pairs so that there
are enough boundary pairs for agents to move from one re-
gion to another.

A naive partitioning approach can result in a bad parti-
tion and poor scalability of HMAPP on grids with obstacles.
If HMAPP partitions the grid in Figure 1 into 2 × 2 = 4
regions, each of size 4× 4, then it further partitions the top-
right region into two regions since it is not connected. One
of the resulting regions consists of cells F5, G5 and H5 and
is corridor-shaped. For a corridor-shaped region, a solution
might not exist for even only two agents. To improve the
quality of the resulting partition, (1) if there is a corridor-
shaped region, then HMAPP randomly picks one of its adja-
cent regions (if there is one) and merges these two regions to
eliminate regions that contain only narrow corridors, and (2)
if there is a pair of adjacent regions that share fewer than two
boundary pairs, then HMAPP merges them to ensure that an
agent can always reach an adjacent region from its current
region. HMAPP repeats this procedure until no such cases
exist any longer. Figure 1 shows the region r0 obtained after
merging the top-left region with the corridor-shaped region.

The high-level planner of HMAPP is responsible for find-
ing high-level plans for all agents. For each agent, HMAPP
randomly picks one of its shortest paths from its start ver-
tex to its goal vertex that moves from region to region only
at boundary pairs in their directions. HMAPP then gener-
ates the high-level plan that corresponds to the sequence of
regions visited by this path. Due to Partitioning Rule (2)
above, there always exists such a path for each agent.



Algorithm 2: replan() for regional planners.
input: Regional planner Pr and a set of agents A′,

which is the set of agents that are ready to
enter r.

1 Pr.P ← ECBS (Pr.A ∪A′,Pr.C);
2 if ECBS failed to find a solution then
3 return failure;
4 end
5 foreach agent ai ∈ A′ do
6 t← entry timestep of ai according to Pr.P ;
7 〈v′, v〉 ← the boundary pair ai uses to enter r;
8 r′ ← the region v′ is part of;
9 Pr.C.add(entry〈ai, v, t〉);

10 Pr′ .C.add(exit〈ai, v′, t〉);
11 end
12 Pr.A← Pr.A ∪A′;
13 return success;

Regional Planning
The regional planners of HMAPP find sub-paths for the
agents inside their regions. The regional planner Pr for re-
gion r maintains multiple data structures to keep track of
the agents and their sub-paths. Pr.A is the set of agents that
already have determined entry timesteps to r. Pr.C is the
set of constraints of the agents in Pr.A that keep track of
their entry timesteps to r and exit timesteps from r and the
associated entry and exit vertices, respectively. Two types
of constraints can be added to Pr.C. The first one is an
entry-vertex-timestep constraint entry〈ai, v, t〉, which en-
forces that agent ai enters r from entry vertex v at entry
timestep t. The second one is an exit-vertex-timestep con-
straint exit〈ai, v, t〉, which enforces that agent a exits re-
gion r from exit vertex v at exit timestep t. Pr.P is a set of
conflict-free sub-paths of the agents in Pr.A that satisfy the
constraints in Pr.C.

HMAPP uses ECBS to solve the regional planning prob-
lems. Agent ai is a local agent of region r if ai does not
have a next region in its high-level plan when it is in r;
otherwise, agent ai is a migrating agent of region r. For
each migrating agent ai of region r, let pi denote the sub-
path of ai in r and 〈v, v′〉 denote the boundary pair to the
next region of ai that pi leads to. The cost of ai for Pr is
cost(pi) + h(v′) + 1, where h(v′) is an admissible heuristic
function for the distance from v′ to gi (if all other agents are
ignored) and cost(pi) is the path cost of pi. For each local
agent ai of r, the cost of ai for Pr is the path cost of pi.

On Line 12 of Algorithm 1, HMAPP invokes Algorithm 2
to plan the entry timestep and sub-path of each agent ai in
A′ that is ready to enter region r from region r′ via bound-
ary pair 〈v′, v〉 at timestep T and adds both an entry-vertex-
timestep constraint to Pr.C so that ai must enter region r at
v at timestep t (Line 9 of Algorithm 2) and an exit-vertex-
timestep constraint to Pr′ .C so that ai must exit from region
r′ at v′ at timestep t (Line 10 of Algorithm 2).

On Line 17 of Algorithm 1, HMAPP invokes Algorithm 2
to replan the sub-paths of the agents in Pr.A to ensure

1

2
A

B

C

D

1 2 3 4

Figure 2: Shows an example where the regional planner re-
plans the sub-path of agent a1 when agent a2 is ready to
enter the region. Agent a1 has its start vertex at D2, and
agent a2 is ready to enter the region from entry vertex B4 at
timestep 2.

1

2
A

B

C

D

E

1 2 3 4 5

Figure 3: Shows an example where the regional planner is
unable to find a solution. Agent a1 has its start vertex at E3,
and agent a2 is ready to enter the region from entry vertex
B5 at timestep 3.

that the newly-added entry-vertex-timestep and exit-vertex-
timestep constraints are satisfied. During this procedure, no
new constraints are added.

The regional planning problem is similar to the online
MAPF problem (Švancara et al. 2019), where agents move
along their paths as T increases. However, agents do not
move in the regional planning problem. Therefore, when Pr

replans the sub-paths for the agents in Pr.A, it is allowed to
modify their entire sub-paths in r.

Example 1. Figure 2 shows an example where the regional
planner replans the sub-path of agent a1 when a new agent
a2 is ready to enter the region. Initially, only a1 is in the
region, and the regional planner finds a sub-path for a1 to
exit the region at A4 at timestep 4, which is shown by the
dashed blue line. At timestep 2, a1 is at C4, and a2 is ready
to enter the region. The regional planner then finds new sub-
paths for a1 and a2. If a1 follows its original sub-path, then
a2 must be delayed to exit its region. However, there is an
alternative sub-path for a1, which is shown by the solid blue
line and has the same path cost as the current sub-path of
a1. The regional planner therefore replans the sub-paths so
that a1 uses the alternative sub-path and a2 is not delayed
to exit its region. In contrast, an online MAPF solver could
not change the movement of the agents before timestep 2.

Handling Regional Planning Failures
On Lines 9-10 of Algorithm 2, new constraints are added
that determine the entry and exit timesteps of agents. Since
the exit timestep of an agent from its current region is de-
termined by the regional planner of the next region of the
agent, this exit timestep may prevent the regional planner of



the current region of the agent from finding a solution.

Example 2. Figure 3 shows an example where the regional
planner is unable to find a solution. Initially, only agent a1
is in the region, and the regional planner finds a sub-path
for a1 to exit the region at C5 at timestep 4, which is shown
by the solid blue line. At timestep 3, agent a2 is ready to
enter the region. The regional planner finds the sub-paths
for a1 and a2 shown in the figure, where neither agent needs
to wait since the regional planner assumes that a1 exits the
region immediately when it is at C5 and a2 exits the region
immediately when it is at E5. At timestep 4, a1 is at C5
and its exit timestep is determined. Assume that it is 10. The
regional planner then finds new sub-paths for a1 and a2, for
example, where a1 waits in E3 for 6 timesteps and a2 still
does not wait since the regional planner assume that a2 exits
the region immediately when it is at E5. At timestep 7, agent
a2 is at E5 and its exit timestep is determined. Assume that
it is 9. The regional planner then tries to find new sub-paths
for a1 and a2 but fails since a2 exiting the region at E5
at timestep 9 implies that a1 cannot exit the region before
timestep 12.

When a regional planner is unable to find a solution (Lines
18-19 of Algorithm 1), HMAPP determines the vertices of
all agents at timestep T , deletes all constraints and restarts
HMAPP at timestep T . In Example 2, the regional planner
fails to find a solution at timestep T = 7, and HMAPP
restarts at timestep 7 with agent a1 at E4 and agent a2 at
E5. Assume that the exit timestep of a2 is again determined
to be 9. The regional planner then finds new sub-paths for a1
and a2, for example, where a1 waits at E4 (until a2 exits the
region) and then moves to C5 and exits the region immedi-
ately. Therefore, HMAPP is now able to find a solution.

Experimental Evaluation
We compared HMAPP with Ros-dmapf (Pianpak et al.
2019), CA* (Silver 2005), WHCA* (Silver 2005) and ECBS
on different grids. CA* is a greedy MAPF solver which
plans for one agent at a time. WHCA* is a variant of CA*
which interleaves moving agents and planning within a time
window of a given length. The objectives for ECBS and the
regional planners of HMAPP were all minimizing the SoC,
and the suboptimality factors for ECBS and the regional
planners of HMAPP were all set to 1.2. The length of the
time window of WHCA* was set to 16, which we found
to achieve a higher success rate than smaller window sizes
while still achieving a small runtime. Except for Ros-dmapf,
all MAPF solvers were implemented in C++ and share the
same code base as much as possible. We ran all experiments
on a laptop with an i7-8850H CPU and 32 GB of memory.

Experiment 1: Comparison with Ros-dmapf. We did
not have a working implementation of Ros-dmapf avail-
able. Therefore, to compare HMAPP with Ros-dmapf, we
ran HMAPP on the 60 × 60 empty grid MAPF instances
used in (Pianpak et al. 2019) and compared the results of
HMAPP with the results of Ros-dmapf in the paper. Ta-
ble 1 shows the average makespans and numbers of moves
of HMAPP and Ros-dmapf. The number of moves is the sum
of the number of move actions of all agents. HMAPP used

Agents Ros-dmapf HMAPP
144 149 5,996 99 6,043
288 185 12,934 118 12,487
432 230 21,627 118 19,307
576 264 30,704 116 25,520
720 310 43,740 120 32,951

Table 1: Shows the average makespans and numbers of
moves of Ros-dmapf and HMAPP on the 60 × 60 empty
grid for different numbers of agents.

(a) 256× 256 empty grid (b) 128× 128 random grid

(c) Paris 1 256

(d) warehouse-10-20-10-2-2

Figure 4: Shows the grids of the MAPF instances used in
Experiment 2.

both the partition size 10 × 10 and runtime limit of 100s
used in (Pianpak et al. 2019). HMAPP solved all MAPF in-
stances within the time limit. Table 1 shows that the average
makespan of the solutions of HMAPP was less than half of
the average makespan of the ones of Ros-dmapf for MAPF
instances with 576 agents or more.

Experiment 2: Comparison with ECBS and greedy
MAPF solvers. We evaluated all MAPF solvers on the four
grids shown in Figure 4: (a) the 256 × 256 empty grid, (b)
a 128 × 128 grid with 10% randomly blocked vertices, (c)
Paris 1 256 and (d) warehouse-10-20-10-2-2. Grids (c) and
(d) are from the MAPF benchmark (Stern et al. 2019). We
did not use the empty and random grids from the MAPF
benchmark since we were interested in large MAPF in-
stances. For Grids (a)-(c), we used HMAPP with partition
sizes (num row, num col) = (3, 3), (5, 5) and (7, 7). For
Grid (d), we used HMAPP with partition size (7, 5) since
the runtime of HMAPP turned out to be very sensitive to the
size of the regions.

Figure 5 shows that, on most grids, the success rates of
ECBS and CA* quickly dropped as the number of agents
increased. WHCA* successfully solved all MAPF instances
for up to 900 agents on Grid (a). However, on Grids (b)-(d),
the success rate of WHCA* was lower than the ones of some
versions of HMAPP since WHCA* plans only within a time
window of limited length.



100 300 500 700
Agents

0.0

0.2

0.4

0.6

0.8

1.0
Su

cc
es

s R
at

e

HMAPP-3-3
HMAPP-5-5
HMAPP-7-7
ECBS
CA*
WHCA*

(a) 256× 256 empty grid

100 300 500 700 900
Agents

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

HMAPP-3-3
HMAPP-5-5
HMAPP-7-7
ECBS
CA*
WHCA*

(b) 128× 128 random grid

100 300 500 700
Agents

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

HMAPP-3-3
HMAPP-5-5
HMAPP-7-7
ECBS
CA*
WHCA*

(c) Paris 1 256

100 300 500 700 900
Agents

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

HMAPP-7-5
ECBS
CA*
WHCA*

(d) warehouse-10-20-10-2-2

Figure 5: Shows the success rates (that is, the percentages of MAPF instances solved within a time limit of two minutes) of
various MAPF solvers on each grid for different numbers of agents.

100 300 500 700
Agents

160

170

180

190

200

Pa
th

 C
os

t

HMAPP-3-3
HMAPP-5-5
HMAPP-7-7
ECBS
CA*
WHCA*

(a) 256× 256 empty grid

100 300 500 700 900
Agents

85

90

95

100

105

110

Pa
th

 C
os

t

HMAPP-3-3
HMAPP-5-5
HMAPP-7-7
ECBS
CA*
WHCA*

(b) 128× 128 random grid

100 300 500 700
Agents

195

200

205

Pa
th

 C
os

t

HMAPP-3-3
HMAPP-5-5
HMAPP-7-7
ECBS
CA*
WHCA*

(c) Paris 1 256

100 300 500 700 900
Agents

90

100

110

120

Pa
th

 C
os

t

HMAPP-7-5
ECBS
CA*
WHCA*

(d) warehouse-10-20-10-2-2

Figure 6: Shows the average path costs per agent (averaged over the MAPF instances solved by all MAPF solvers that success-
fully solved at least one MAPF instance) of various MAPF solvers on each grid for different numbers of agents.

100 300 500 700
Agents

0

50

100

Ru
n 

tim
e

HMAPP-3-3
HMAPP-5-5
HMAPP-7-7
ECBS
CA*
WHCA*

(a) 256× 256 empty grid

100 300 500 700 900
Agents

0

50

100

Ru
n 

tim
e

HMAPP-3-3
HMAPP-5-5
HMAPP-7-7
ECBS
CA*
WHCA*

(b) 128× 128 random grid

100 300 500 700
Agents

0

50

100

Ru
n 

tim
e

HMAPP-3-3
HMAPP-5-5
HMAPP-7-7
ECBS
CA*
WHCA*

(c) Paris 1 256

100 300 500 700 900
Agents

0

50

100

Ru
n 

tim
e

HMAPP-7-5
ECBS
CA*
WHCA*

(d) warehouse-10-20-10-2-2

Figure 7: Shows the average runtimes (in seconds, averaged over the MAPF instances solved by all MAPF solvers that success-
fully solved at least one MAPF instance) of various MAPF solvers on each grid for different numbers of agents.

Figure 6 shows that all versions of HMAPP had smaller
average path costs on all grids than CA* and WHCA*. Ex-
cept for Grid (c), the average path costs of HMAPP were
more than 10% smaller than those of WHCA* for large num-
bers of agents. Except for Grid (d), which has many narrow
corridors, the average path costs of HMAPP were close to
the average path costs of ECBS.

Figure 7 shows that all versions of HMAPP had smaller
average runtimes than CA* and ECBS on all grids because
HMAPP does not plan paths across the entire grid. However
HMAPP had larger average runtimes than WHCA* since
WHCA* plans within smaller time windows.

Conclusions and Future Work

In this paper, we have proposed HMAPP which solves the
MAPF problem by creating a spatial hierarchy that decom-
poses a MAPF instance into MAPF sub-instances. Our ex-
perimental results show that HMAPP solves as large MAPF
instances as greedy MAPF solvers while achieving better so-
lution qualities on various maps.

Our future work includes (1) making HMAPP complete
by controlling the number of agents in each region; (2) au-
tomatically generating a good partition of the graph of a
MAPF instance and (3) developing high-level planning ap-
proaches that take potential congestion into account.



Acknowledgments
The research at the University of Southern California was
supported by the National Science Foundation (NSF) under
grant numbers 1409987, 1724392, 1817189, 1837779 and
1935712, as well as a gift from Amazon.

References
Barer, M.; Sharon, G.; Stern, R.; and Felner, A. 2014. Sub-
optimal variants of the conflict-based search algorithm for
the multi-agent pathfinding problem. In International Sym-
posium on Combinatorial Search (SoCS), 19–27.

Botea, A.; Müller, M.; and Schaeffer, J. 2004. Near opti-
mal hierarchical path-finding. Journal of Game Develop-
ment 1(1): 7–28.

Choudhury, S.; Solovey, K.; Kochenderfer, M. J.; and
Pavone, M. 2020. Efficient large-scale multi-drone delivery
using transit networks. In IEEE International Conference on
Robotics and Automation (ICRA), 4543–4550.

Kapadia, M.; Beacco, A.; Garcia, F.; Reddy, V.; Pelechano,
N.; and Badler, N. I. 2013. Multi-domain real-time
planning in dynamic environments. In ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation,
115–124.

Li, J.; Tinka, A.; Kiesel, S.; Durham, J. W.; Kumar, T. K. S.;
and Koenig, S. 2020. Lifelong multi-agent path finding in
large-scale warehouses. In International Joint Conference
on Autonomous Agents and Multi-Agent Systems (AAMAS),
1898–1900.

Ma, H.; Hönig, W.; Cohen, L.; Uras, T.; Xu, H.; Kumar,
T. S.; Ayanian, N.; and Koenig, S. 2017. Overview: A hi-
erarchical framework for plan generation and execution in
multirobot systems. IEEE Intelligent Systems 32(6): 6–12.

Ma, H.; Tovey, C.; Sharon, G.; Kumar, T. K. S.; and Koenig,
S. 2016. Multi-agent path finding with payload transfers
and the package-exchange robot-routing problem. In AAAI
Conference on Artificial Intelligence (AAAI), 3166–3173.

Pearl, J.; and Kim, J. H. 1982. Studies in semi-admissible
heuristics. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence PAMI-4(4): 392–399.

Pelechano, N.; and Fuentes, C. 2016. Hierarchical path-
finding for navigation meshes (HNA*). Computers &
Graphics 59: 68–78.

Pianpak, P.; Son, T. C.; Toups, Z. O.; and Yeoh, W. 2019.
A distributed solver for multi-agent path finding problems.
In International Conference on Distributed Artificial Intelli-
gence (DAI), 1–7.

Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding.
Artificial Intelligence 219: 40–66.

Silver, D. 2005. Cooperative pathfinding. In AAAI Confer-
ence on Artificial Intelligence and Interactive Digital Enter-
tainment (AIIDE), 117–122.

Stern, R.; Sturtevant, N. R.; Atzmon, D.; Walker, T.; Li, J.;
Cohen, L.; Ma, H.; Kumar, T. K. S.; Felner, A.; and Koenig,

S. 2019. Multi-agent pathfinding: Definitions, variants, and
benchmarks. In International Symposium on Combinatorial
Search (SoCS), 151–158.
Švancara, J.; Vlk, M.; Stern, R.; Atzmon, D.; and Barták, R.
2019. Online multi-agent pathfinding. In AAAI Conference
on Artificial Intelligence (AAAI), 7732–7739.
Wilt, C. M.; and Botea, A. 2014. Spatially distributed mul-
tiagent path planning. In International Conference on Auto-
mated Planning and Scheduling (ICAPS), 332–340.
Wurman, P. R.; D’Andrea, R.; and Mountz, M. 2008. Co-
ordinating hundreds of cooperative, autonomous vehicles in
warehouses. AI Magazine 29(1): 9–20.
Yu, J.; and LaValle, S. M. 2013. Structure and intractability
of optimal multi-robot path planning on graphs. In AAAI
Conference on Artificial Intelligence (AAAI), 1443–1449.


