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Abstract

Multi-Agent Path Finding (MAPF) is the combinatorial prob-
lem of finding collision-free paths for multiple agents on a
graph. This paper describes MAPF-based software for solv-
ing train planning and replanning problems on large-scale
rail networks under uncertainty. The software recently won
the 2020 Flatland Challenge, a NeurIPS competition try-
ing to determine how to efficiently manage dense traffic on
rail networks. The software incorporates many state-of-the-
art MAPF or, in general, optimization technologies, such as
prioritized planning, large neighborhood search, safe inter-
val path planning, minimum communication policies, paral-
lel computing, and simulated annealing. It can plan collision-
free paths for thousands of trains within a few minutes and
deliver deadlock-free actions in real-time during execution.

1 Introduction
The Flatland Challenge (Mohanty et al. 2020) is a com-
petition set up to answer the question “How to efficiently
manage dense traffic on complex rail networks?” It is orga-
nized by AIcrowd, an online AI crowd sourcing platform,
and Swiss Federal Railways, Deutsche Bahn, and SNCF,
three large railway network operators. The first iteration of
the competition happened in 2019. The second iteration hap-
pened in 2020 and is what this paper discusses. The Flat-
land Challenge consists of an idealized rail planning prob-
lem. Given a map showing rail tracks and train stations (see
Figure 1) and a set of trains with start and target stations, the
task is to design a plan so that each train moves from its start
station to its target station within a given time limit, while
respecting the usage of track segments, i.e., no two trains
occupy the same track segment (a vertex collision) or cross
each other by moving in opposite directions from adjacent
track segments (an edge collision) at the same time.

The academic version of the Flatland Challenge is
called Multi-Agent Path Finding (MAPF), which is mov-
ing multiple agents from start to target locations on a
graph while avoiding vertex and edge collisions. MAPF is
the quintessential movement coordination problem and is
widely applicable in computer games (Sigurdson et al. 2018;
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Figure 1: Flatland environment represented by a 229 × 229
grid map. The grey lines represent rail tracks, clusters of
buildings represent cities, and the red houses on the rail
tracks represent (some of the) train stations.

Li et al. 2020b), automated valet parking (Okoso, Otaki,
and Nishi 2019), UAV traffic management (Ho et al. 2019),
drone swarms (Hönig et al. 2018), and automated warehous-
ing (Ma et al. 2017; Li et al. 2021b).

The Flatland Challenge is an exciting event and has been
proved very attractive to enter. The 2020 Flatland Chal-
lenge involved more than 700 participants from 51 coun-
tries making more than 2,000 submissions over 4 months;
64 teams participated in Round 1 and 44 teams in Round 2.
In this paper, we explain the methods we tried out in tack-
ling the Flatland Challenge, and some of the peculiarities
that arose in the challenge itself; culminating in our final ap-
proach, MAPF-based software that won both rounds of the
2020 Flatland Challenge. The software incorporates many
state-of-the-art MAPF or, in general, optimization technolo-
gies, such as prioritized planning (Silver 2005), large neigh-
borhood search (Shaw 1998), safe interval path planning
(Phillips and Likhachev 2011), minimum communication
policies (Ma, Kumar, and Koenig 2017), parallel comput-
ing, and simulated annealing. It can plan collision-free paths
for thousands of trains within a few minutes and deliver
deadlock-free actions in real-time during execution.

2 Flatland Environment
In this section, we introduce the Flatland environment and
explain its relationship to MAPF.

2.1 Problem Definition
A Flatland environment simulates a rail network and its
trains in a simplified way. The rail network is represented by
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Figure 2: Eight rail types: (a) straight, (b) curve, (c) sim-
ple switch, (d) diamond crossing, (e) single slip switch, (f)
double slip switch, (g) tri-symmetrical switch, and (h) sym-
metrical switch. Each rail type can be rotated or reflected.

a w× h grid map with n cities. Each unblocked cell is asso-
ciated with a rail type, as shown in Figure 2, that determines
how the train can move through the cell. Each city contains
2, 3, or 4 parallel rail tracks, and each rail track in a city
contains a train station. There are m trains a1, a2, ..., am,
each with a start cell (= a train station), an initial orienta-
tion, and a target cell (= another train station). Time is dis-
cretized into timesteps from 0 to Tmax = b8(w + h+ m

n )c.
Our task is to give commands to the trains at every timestep
so that we move as many trains as possible to their target
cells as early as possible. To be more specific, we want
to maximize the normalized reward (or reward for short)
δ

Tmax
−

∑
1≤i≤m Ti

mTmax
∈ [−1, 0], where Ti ∈ [1, Tmax] is the

arrival time of train ai at its target cell if it reaches its tar-
get cell by timestep Tmax and Tmax otherwise, and δ is 1
if all trains reach their target cells by timestep Tmax and 0
otherwise. We define the success rate as the percentage of
trains that reach their target cells by timestep Tmax. If the
success rate of a given instance is 1, then maximizing the re-
ward is equivalent to minimizing the flowtime

∑
1≤i≤m Ti,

which is a common metric to evaluate the solution quality in
the MAPF literature. We define the earliest arrival time T 0

i
of train ai as the earliest timestep when it can reach its target
cell when ignoring collisions with other agents.

At timestep 0, no trains are in the environment. For each
train, we determine its departure time and give a command
at that time to let it enter the environment, i.e., appear at
its start cell with its initial orientation, which takes one
timestep. While the train is in the environment, it always
occupies one cell at each timestep. We give a move or stop
command to it at every timestep until it reaches its target
cell. The train immediately leaves the environment when it
reaches its target cell. If we give a stop command, the train
stops and waits at its current cell. If we give a move for-
ward/left/right command (following the transition rule indi-
cated by the rail type of its current cell), then the train needs
one timestep to move to the corresponding adjacent cell iff
(1) this move action does not conflict with the actions of any
other trains; and (2) the train is not suffering from a mal-
function. It remains at its current cell otherwise. We say two
actions conflict iff they lead to a collision. The definition
of collisions was slightly different in Round 1 and Round
2 and thus will be introduced in detail in the corresponding
sections (i.e., Sections 3.4 and 4.1). For clarity, we assume
for now that two trains collide iff they are at the same cell
or traverse two adjacent cells in opposite directions at the
same timestep. Malfunctions simulate delays by stopping a
train at a random timestep for a random duration, where, for
each train, the random timestep is generated by a Poisson

process with a known rate λ (called malfunction rate) and
is not known a priori, and the random duration is uniformly
selected between 20 and 50 timesteps and becomes known
when the malfunction occurs.

A software library written in Python was provided to sim-
ulate the environment. The simulation on one instance fin-
ishes when all trains reach their target cells or Tmax is
reached. The simulation on the next instance starts only after
the simulation on the previous instance has finished. To save
on runtime, our solution software1 is written as a dynamic
library in C++ and called by the Python simulator.

2.2 Relationship with MAPF and Its Variants
MAPF is a broad family of problems with many vari-
ants (Stern et al. 2019). A widely used formulation defines
MAPF on an undirected graph with a team of agents, each
with a start and target vertex. At each timestep, an agent
can either move to an adjacent vertex or wait at its current
vertex. Agents are at their start vertices at timestep 0 and re-
main at their target vertices after they complete their paths
(where they can still collide with other agents). The task is
to move all agents with minimum flowtime to their target
vertices without collisions.

The Flatland Challenge has important differences to stan-
dard MAPF but is related to some MAPF variants:

1. Train movement is restricted to rails, which make up a
small proportion of the map. Trains may not move back-
ward. This requires us to take into account the orienta-
tion of the trains when planing paths, which is related to
MAPF with motion planning (Cohen et al. 2019).

2. Trains enter the environment over time and leave it af-
ter reaching their target cells, which is related to online
MAPF (Svancara et al. 2019).

3. We are asked to move as many trains as possible (instead
of all trains) to their target cells before a given timestep,
which is related to MAPF with deadlines (Ma et al. 2018).

4. Trains break down randomly while moving and remain
then stationary at the breakdown location for a number of
timesteps, which is related to MAPF with delay probabili-
ties or stochastic travel times (Cáp, Gregoire, and Frazzoli
2016; Ma, Kumar, and Koenig 2017; Wagner and Choset
2017; Li et al. 2019; Coskun and O’Kane 2019; Atzmon
et al. 2020; Street et al. 2020).

3 Round 1
Round 1 required solving 400 instances with 14 different
settings (see Table 1) in a random order within 8 hours (in-
cluding both planning and simulation time) while maximiz-
ing the mean reward. The reward for each unsolved instance
is -1. For each instance, we were given up to 300 seconds
to generate the first action commands at timestep 0 (i.e., be-
fore execution) and then up to 5 seconds to generate the next
action commands at every timestep (i.e., during execution).

1https://github.com/Jiaoyang-Li/Flatland



test m w h n λ #instances
Test 0 5 25 25 ≤ 2 ≤ 1/50 50
Test 1 10 30 30 ≤ 2 ≤ 1/100 50
Test 2 20 30 30 ≤ 3 ≤ 1/200 50
Test 3 50 20 35 ≤ 3 ≤ 1/500 40
Test 4 80 35 20 ≤ 5 ≤ 1/800 30
Test 5 80 35 35 ≤ 5 ≤ 1/800 30
Test 6 80 40 60 ≤ 9 ≤ 1/800 30
Test 7 80 60 40 ≤ 13 ≤ 1/800 30
Test 8 80 60 60 ≤ 17 ≤ 1/800 20
Test 9 100 80 120 ≤ 21 ≤ 1/1000 20

Test 10 100 100 80 ≤ 25 ≤ 1/1000 20
Test 11 200 100 100 ≤ 29 ≤ 1/2000 10
Test 12 200 150 150 ≤ 33 ≤ 1/2000 10
Test 13 400 150 150 ≤ 37 ≤ 1/4000 10

Table 1: The settings of the 400 instances used in Round 1.

3.1 Finding the Approach to Path Compatibility
The Flatland Challenge is a MAPF problem at its core. The
first three differences discussed in Section 2.2 can be ad-
dressed with small modifications to existing MAPF algo-
rithms. The last difference, namely the malfunctions, can be
handled during execution. We therefore started with trying
variants of existing MAPF algorithms to plan collision-free
paths under the assumption that no malfunctions occur.

Conflict Based Search (CBS) with Corridor Reasoning
CBS (Sharon et al. 2015) is a leading approach to solving
MAPF optimally. It calls space-time A* (Silver 2005), a vari-
ant of A* that finds the shortest path with respect to given
spatio-temporal constraints, to plan paths for single agents
on the low level and resolves collisions among the planned
paths on the high level. Li et al. (2020a) demonstrate that
corridor reasoning speeds up CBS significantly when the
map contains corridors (i.e., chains of vertices, each of de-
gree 2). The Flatland maps are full of single-track corridors,
and the main target of Round 1 was to optimize solution
quality. This makes CBS with corridor reasoning seemingly
a good fit for the task, as it solves the problem optimally
and is efficient on maps with corridors. We therefore tried it
first. We modified space-time A* by adding the orientation
of the train as an additional attribute of the state and assign-
ing a dummy state to the root A* node to represent the train
not being in the environment. However, the situation where
many trains share one start cell causes CBS to exhaustively
explore all possible departure sequences for the trains. In
addition, corridor reasoning cannot efficiently address the
situation when many trains traverse the same single-track
corridor as it reasons about only two agents at a time. As a
result, CBS struggles to solve instances with dozens of trains
within an acceptable runtime.

Prioritized Planning The failure of CBS led to the idea of
reducing the number of trains in each CBS search. The re-
sult was Grouped Prioritized Planning, which first sorts all
trains in a priority ordering and then, from the highest prior-
ity to the lowest priority, plans paths for a group of trains us-
ing CBS while avoiding collisions with the already planned
paths of all higher-priority trains. However, we abandoned

CBS when we noticed that setting the group size to 1, which
makes the algorithm degenerate to a vanilla Prioritized
Planning (PP) (Silver 2005), results in the most efficient set-
ting. In addition, settings with group sizes larger than 1 do
not bring advantages in solution quality and dramatically in-
crease the runtime. Another reason for considering PP is that
the Flatland environment is “well-formed” (Ma et al. 2019),
and PP with any priority ordering is thus guaranteed to find
collision-free paths for all trains although not necessarily of
lengths smaller than Tmax. In practice, however, the path
lengths generated by PP were always smaller than Tmax.

3.2 Improving the Solution Quality
Although PP can find collision-free paths rapidly, its solu-
tion quality is far from optimal. Furthermore, the Flatland
Challenge allowed 300 seconds for generating the initial
plan, and PP is able to solve each Round 1 instance with-
out reaching this runtime limit. Therefore, we wanted to use
the remaining time to improve the solution quality.

Large Neighborhood Search (LNS) LNS (Shaw 1998)
was originally invented for vehicle routing problems and is
popular in solving challenging discrete optimization prob-
lems. Our recent work (Li et al. 2021a) shows the effec-
tiveness of LNS for solving MAPF. We followed this work
by using PP to generate an initial solution and repeating a
neighborhood search process to improve the solution qual-
ity until the time/iteration limit is reached. In each iteration,
we select a subset of ms trains (ms ≤ m, we used ms = 5),
called a neighborhood, and replan their paths using PP (with
a random priority ordering). The new paths need to avoid
collisions with each other and with the paths of all other
trains. We adopt the new paths if they reduce the flowtime.
We designed three neighborhood selection strategies (the
first two are from (Li et al. 2021a)): (1) the train-based strat-
egy, which selects a train ai with the largest delay Ti − T 0

i
and ms − 1 trains that prevent train ai from reaching its
target cell earlier; (2) the intersection-based strategy, which
selects ms trains that visit the same intersection (i.e., cell of
rail types (c) to (g) in Figure 2); and (3) the start-based strat-
egy, which selects ms trains with the same start cell. We use
adaptive LNS (Ropke and Pisinger 2006), which records the
relative improvement of the flowtime of the three strategies
and chooses strategies with probabilities proportional to its
relative improvement to generate the next neighborhood.

Parallel LNS As the Flatland Challenge provided 4 CPUs
for evaluation, we run 4 LNS threads in parallel, one for each
of the following priority orderings (used by PP to generate
the initial solution):

1. in order of the train indices: lowest to highest,
2. in order of the earliest arrival time: highest to lowest,
3. in order of the earliest arrival time: lowest to highest, and
4. preferring different start cells, breaking ties by maximiz-

ing the earliest arrival time. That is, we divide the agents
into groups according to their start cells and iterate over
the groups, each time selecting the train ai that has the
smallest earliest arrival time T 0

i among the trains remain-
ing in the group and then moving to the next group.



We are interested in the earliest arrival times T 0
i of the trains

for two reasons. On the one hand, prioritizing trains with
larger T 0

i tends to increase the number of the trains that
reach their target cells before timestep Tmax. On the other
hand, prioritizing trains with smaller T 0

i tends to allow the
trains with small T 0

i to reach their target cells very fast and
reduce the influence of their malfunctions to other trains,
which in turn reduces the flowtime. In addition, the motiva-
tion behind the first priority is explained in Section 3.4, and
the motivation behind fourth priority ordering is to gener-
ate an initial solution that is likely to be very different from
the solutions generated by the other three priority orderings.
Empirically, the third priority ordering performs better than
the other ones in many cases, but there is no single priority
ordering that dominates the other ones.

Since we needed to solve 400 instances within 8 hours (=
28,800 seconds), we set the runtime limit of LNS for each in-
stance to max{280, tl + 5m} seconds, where t ∈ [0, 28800]
is the remaining runtime budget, l is the remaining number
of instances, and m is the number of trains. The term 5m
allocates more runtime budget to harder instances. In order
to avoid spending too many iterations on easy instances, we
also set an iteration limit of 10,000 for each instance. We
terminate an LNS thread when the runtime limit or the it-
eration limit is reached. Once all LNS threads finished, we
pick the solution with the smallest flowtime. Since the in-
stances were evaluated in a random order and we usually
do not reach the runtime limit for easy instances, we always
successfully solved 400 instances within 8 hours.

We tested the algorithms on our server, i.e., Nectar Re-
search Cloud using an instance with an AMD Opteron 63xx
class CPU and 64 GB RAM, using our self-generated in-
stances. LNS reduced the flowtime on 312 out of 400 in-
stances over PP, with an average reduction of 12.4%. Parallel
LNS reduced the flowtime on 157 instances over LNS, with
an average reduction of 11.1%. As a result, LNS improved
the mean reward by 0.010 (= 3 times the difference to the
team in second place) on our server. Parallel LNS further
improved it by 0.001.

3.3 Recovering from Breakdowns
When a train malfunctions during execution, deadlocks
might happen if we stick to the original paths. Figure 3
shows an example. Trains 1 and 3 want to move to target cell
C, and train 2 wants to move to target cell A. In the original
paths, they all move to their target cells without stopping.
However, if train 1 malfunctions and stops at cell A, say, for
20 timesteps, then, after 4 timesteps, train 2 reaches cell B.
There is a deadlock between trains 1 and 2, and, since trains
are not allowed to move backward, neither of them can reach
their target cells.

Minimum Communication Policies (MCP) MCP (Ma,
Kumar, and Koenig 2017) avoids such deadlocks by stop-
ping some trains to maintain the ordering with which each
train visits each cell. It guarantees that all trains can reach
their target cells within a finite number of timesteps. In the
example shown in Figure 3, the ordering with which the
trains visit cell D is 1, 2, and 3. Therefore, if train 1 mal-

Figure 3: Three-train example.

functions, train 2 waits at cell I until train 1 visits cell D
first, which successfully avoids the deadlock.

Partial Replanning MCP sometimes stops trains unnec-
essarily. In the previous example, when train 1 malfunctions
for 20 timesteps, MCP stops train 3 at cell E for 20 timesteps
because train 3 has to visit cell D after train 2. However, this
is unnecessary since train 3 can visit cell D first, without
waiting for trains 1 or 2. Therefore, we develop a partial re-
planning mechanism. When train ai encounters a new mal-
function at some timestep, we collect all intersections that
train ai visits in the future and then collect all trains that
visit at least one of these intersections after train ai. We re-
plan the paths of these trains one after the other with PP. We
terminate this procedure when new paths have been planned
for all these trains or the runtime limit has been reached (we
used 3 seconds). Empirically, adding the partial replanning
technique reduced the flowtime on 261 instances, with an
average reduction of 19.9%. As a result, we improved the
mean reward by 0.014 on our server.

3.4 Fighting with the Simulator
Asymmetric Movement Rule A very common rule in
practice is that a train may not enter a track segment if it is
not yet clear, a rule enforced by the so called absolute block
signaling. MAPF with delay probabilities (Ma, Kumar, and
Koenig 2017) also uses a similar movement rule, i.e., agents
can move only to cells that are currently not occupied by
other agents, because it guarantees that, if an agent stops un-
expectedly, the agent following it will not collide with it at
the next timestep. We assumed that the Flatland Challenge
used the same movement rule as well, since example solu-
tions often had two trains moving along the same rail track,
separating by one unoccupied cell. However, we then real-
ized that this behavior was not necessary but rather an arti-
fact of the simulator. The trains in the simulator are moved
one at a time in index order. Hence, if train 2 is directly in
front of train 1 and has a larger index than train 1, then train
1 cannot move to the cell where train 2 still is. But if we re-
verse the situation, then train 2 can move to the cell where
train 1 was, since train 1 moves first and leaves its cell. This
means that convoys of trains can move without separation
if they were ordered from lowest index in the front to high-
est index in the back. Once we realized this, we modified
space-time A* and MCP to take this asymmetric movement
rule into account, and the mean reward improved by 0.007
on our server.

Command Commitment Another feature of the simula-
tor which came as a surprise to us and required quite some



workaround was the committed nature of decisions. Once
a train is given a move command, this command cannot be
changed until the movement succeeds. So, if train 1 tries to
move to cell A but fails due to collisions or malfunctions,
then we cannot update its move command to a stop com-
mand or try a different move command next. Instead, train
1 can be issued a new move or stop command only after it
succeeds in moving to cell A. This issue requires a lot of
effort to handle corner cases in partial replanning. For ex-
ample, when we replan the path of train 1, we have to keep
train 1 waiting at its current cell and immediately move it
to cell A when possible. When we replan the paths of other
trains, we have to prohibit them from moving to cell A at
those timesteps when train 1 has not yet moved to cell A.

3.5 Summary
In summary, we use PP to generate an initial solution and
LNS to improve its quality. During execution, we use MCP
to generate action commands and partial replanning to im-
prove the solution quality when a train encounters a new
malfunction. On the leaderboard, we eventually achieved a
score (= mean reward) of -0.104 with a success rate of 100%,
which was 0.003 (= 3%) and 0.012 (= 10%) higher than the
scores of the teams in second and third place.

4 Round 2
Round 2 required maximizing the accumulated (modified)
reward over an infinite number of instances of increasing
difficulty within 8 hours, where the reward for each instance
was changed to δ

Tmax
−

∑
1≤i≤m Ti

mTmax
+1 ∈ [0, 1], i.e., the orig-

inal reward plus one. So, there is a trade-off between spend-
ing more runtime on each instance to obtain a higher reward
per instance and spending less runtime on each instance to
obtain rewards from more instances.

The instances were grouped into tests of increasing diffi-
culty. Each test contains 10 levels with different malfunction
rates, where Level 0 does not have malfunctions (λ = 0),
and Level j (1 ≤ j ≤ 9) has malfunction rate λ = 1

250j .
Each level contains one instance. The number of trains in
each instance in Test 0 is m0 = 1, and that in Test (i + 1)
(i ≥ 0) ismi+1 = mi+d0.75×10len(mi)−1e, where len(x)
is the number of digits in integer x. For each instance in
Test i (i ≥ 0), the number of cities is ni = bmi

10 c + 2,
and the size of the grid map is wi = hi = d

√
150nie + 7.

For instance, m10 = 18, n10 = 3, and w10 = h10 = 29;
m20 = 98, n20 = 11, and w20 = h20 = 48; and m30 =
781, n30 = 80, and w30 = h30 = 117. The map shown
in Figure 1 is generated using the parameters of Test 36.
For each instance, we are given up to 600 seconds to gen-
erate the first action commands at timestep 0 and then up to
10 seconds to generate the next action commands at every
timestep. Generally speaking, Round 2 instances were sub-
stantially more challenging than Round 1 instances. They
have more trains and higher malfunction rates. For example,
the most challenging instance we solved in our best submis-
sion (i.e., Test 36 Level 1) in Round 2 had 3,256 trains in
total and, on average, 11.35 trains encountering new mal-
functions at every timestep.

4.1 Fighting with the Simulator Again
Symmetric Movement Rule The asymmetric movement
rule explained in Section 3.4 was removed in Round 2. All
trains now essentially moved simultaneously in the simula-
tor, so train 1 can move to the cell that train 2 vacates at the
same timestep independent of the indices of the trains. That
is, collisions were now defined exactly as in Section 2. We
therefore modified space-time A* and MCP accordingly. In
addition, since the movement rule was now independent of
the indices of the trains, we replaced the first priority order-
ing for PP introduced in Section 3.2 with a priority ordering
that prefers different start cells and breaks ties by minimiz-
ing the earliest arrival time.

Observation Builder The simulator returns an observa-
tion at every timestep, which is designed to be used by rein-
forcement learning algorithms to index their policies for ac-
tion selection. By default, a global observation is returned at
every timestep, which contains m copies of the map and the
train information, one for each train. Competition entries can
overwrite the default and create arbitrary observations. Since
we did not make use of the observation, we ignored this part
of the code. Only in Round 2 did we realize that the con-
struction of the global observation required substantial time.
When we replaced the call to return a dummy empty ob-
servation, the simulator sped up substantially, e.g., by more
than 6 times for the instances in Test 27 (which contain 556
trains), and the speed-up increases with the instance size.

Simulation Runtime The simulator runs until all trains
reach their target cells or timestep Tmax is reached. Unfor-
tunately, even after we replaced the global observation, the
simulator was still quite slow. Even when no trains are mov-
ing, it still takes quite a bit of time to run. This means that
strategies that try to solve more instances by planning paths
for only a portion of the trains are expensive, simply in terms
of simulation time. For example, when we ran the best ver-
sion of our software on our server, only 30% of the 8-hour
runtime budget was spent on our C++ software, and 70%
was spent on the Python simulator.

4.2 Trade off between Runtime and Reward
There is a trade-off between spending more runtime on LNS
and partial replanning to obtain a higher reward per instance
and spending less runtime on LNS and partial replanning to
solve more instances within 8 hours.

Simulated Annealing To allocate the runtime spent by
LNS on each instance best, we use Simulated Annealing
(SA) to choose the number of iterations Ni for which we
should run LNS on the instances in each Test i. We first
collect two sets of data averaged over a large number of
instances (by running two sets of experiments, one with 0
iterations and halting after the simulation finishes and one
with 5000 iterations and halting after LNS finishes): (1) the
runtime t0ij and the reward r0ij per instance in each Level j
Test iwith 0 iterations, and (2) the runtime τik spent by LNS
and the reward improvement ratio pik by LNS relative to the
initial solution per instance in each Test i with k ∈ [1, 5000]
iterations (i.e, τik is the runtime of the first k LNS iterations,



and pik is the flowtime of the solution at iteration k divided
by the flowtime of the solution at iteration 0). That is, t0ij
is an estimate of the runtime (including both planning and
simulation time) we need to spend if we do not use LNS, τik
is an estimate of the additional runtime spent by LNS with k
iterations, r0ij is an estimate of the reward without LNS, and
pik is an estimate of the reward improvement ratio for LNS
with k iterations. We define t0ij and r0ij for each level in each
test but τik and pik only for each test because the values of
t0ij and r0ij are different when the malfunction rates are dif-
ferent while τik and pik are irrelevant to the execution and
thus irrelevant to the malfunction rates.

We build a SA model with the number of iterations Ni
being the variables and the accumulated reward being the
objective. We set Ni = 0 for all Test i initially. In each SA
iteration, we randomly select a group of variables and ran-
domly increase or decrease their number of iterations by 5,
10, 20, 50, 100, 200, or 500. For the instance (i, j) of Level j
Test i, we estimate its runtime by tij = t0ij + τiNi

and its
accumulated reward by rij = a · piNi

· r0ij if piNi
> 1 and

rij = piNi
· r0ij otherwise, where a ≥ 1 is an amplification

ratio (we used 1.01), indicating that improving the solution
quality before execution can further improve the reward af-
ter execution, as the reward after execution considers the in-
fluence of malfunctions and the earlier the trains reach their
target cells, the fewer malfunctions they encounter on aver-
age. Then, we use tij to estimate the set of instances I that
can be solved within 8 hours and rij to estimate the resulting
accumulated reward

∑
(i,j)∈I rij .

In practice, the best SA solution allocated non-zero LNS
iterations, ranging from 5 to 1,230, on Test 2 (which con-
tains 3 trains) to Test 27 (which contains 556 trains). When
we tested it on our server, LNS (without parallelization and
with the third priority ordering introduced in Section 3.2)
consumed 799 seconds and improved the accumulated re-
ward by 1.137 among the instances in Test 2 to Test 27.
Eventually, we solved 1 fewer instance within 8 hours and
improve the accumulated reward by 0.709 (= 61% of the dif-
ference to the team in second place).

Parallel LNS with Leader Thread The priority ordering
used by PP to find the initial solutions can have a significant
influence on not only the solution quality of LNS but also
its runtime. Since the third priority ordering introduced in
Section 3.2 performs overall the best, we developed a par-
allelization of LNS that guarantees that, when terminating,
its runtime and solution quality are never worse than those
of LNS with the third priority ordering alone. Specifically,
we use the LNS thread with the third priority ordering as the
leader thread. We then run 4 LNS threads in parallel and ter-
minate them when (1) the leader thread terminates, or (2) a
non-leader thread terminates and the flowtime of its solution
is smaller than the current estimate of the flowtime of the
leader thread, which is the flowtime of the already planned
paths plus the sum of the earliest arrival times of the trains
whose paths have not been planned yet. When we compared
parallel LNS with leader thread against LNS on our server,
parallel LNS with leader thread consumed 9 fewer seconds
and improves the accumulated reward by 0.571 among the

Figure 4: A traffic jam where the trains in the loop can move
only when none of them malfunction.

instances in Test 2 to Test 27.

Partial Replanning Partial replanning can be time-
consuming for large instances since too many trains are mal-
functioning and too many trains are affected by malfunction-
ing trains. In addition, partial replanning is less effective for
large instances in terms of the reward since they have large
values of m and Tmax. We therefore apply partial replan-
ning only for instances in Test 1 (which contains 2 trains) to
Test 28 (which contains 631 trains). On our server, partial
replanning consumed 1,965 seconds on these instances and
improved their accumulated reward by 4.812. Eventually, we
solved 2 fewer instances within 8 hours but improved the ac-
cumulated reward by 3.629.

4.3 Traffic Jams
Round 2 has substantially more agents with higher mal-
function rates than Round 1. We observed that malfunc-
tions can cause severe traffic jams when too many trains
are in the same region. Figure 4 shows an example: the
trains in the figure form a loop and try to rotate clock-
wise simultaneously. However, this can be done only when
none of them malfunction. Assume that there are 50 trains
in the loop with a malfunction rate of λ = 1/250 (which
is used for Level 1 instances) and a malfunction duration
of td = 35 timesteps (which is the average malfunction
duration). Assume also that Tmax = ∞. If we consider
only one train and ignore its collisions with other trains,
then the probability of it first malfunctioning k ∈ [0,∞)
times, which takes ktd timesteps, and then performing a
move action, which takes 1 timestep, is λk(1 − λ). So, on
average, the train performs one move action during every∑∞
k=0 λ

k(1 − λ)(ktd + 1) = 1−λ+λtd
1−λ timesteps and mal-

functions at the remaining timesteps. That is, the probabil-
ity for it not to malfunction at a given timestep is 1−λ

1−λ+λtd .
Thus, the probability of none of the trains in the loop mal-
functioning at a given timestep is ( 1−λ

λtd−λ+1 )
50 ≈ 0.14%,

indicating that it is almost impossible for the trains to move
forward (even for one timestep).

We attempted to relieve such traffic jams by taking the
malfunctions into account during path planning. We modi-
fied space-time A* to find a path for a train that minimizes
its expected arrival time by considering the delays caused by
both the malfunctions of the train and the expected delays of
the train ahead of it. Although minimizing the expected ar-
rival times has been shown to be a successful approach in
the MAPF literature (Ma, Kumar, and Koenig 2017; Li et al.
2019; Atzmon et al. 2020), it did not work for us because



(a) Without lazy planning (b) With lazy planning

Figure 5: Comparison of the runtimes of SIPP without and
with lazy planning. The paths of the trains to the right of the
vertical dashed line are planned during execution.

trains usually have a limited number of paths to their target
cells in the Flatland environment, so they often do not have
paths available that avoid congested regions. We thus aban-
doned this approach and leave this issue for future work.

4.4 Speed Is All That Matters
We use space-time A* to find the shortest path for a train
that avoids collisions with the given paths of all other trains.
Each state of space-time A* is a pair of a cell and a timestep.
As a result, for large instances with many trains, the num-
ber of timesteps is usually large, and thus the search space
of space-time A* is also large, which leads to unacceptable
runtimes. We therefore develop the following two methods
for speeding up path finding for single trains.

Safe Interval Path Planing (SIPP) SIPP (Phillips and
Likhachev 2011) is an advanced variant of space-time A*
that groups contiguous, collision-free timesteps into safe in-
tervals and represents each state by a pair of a cell and a safe
interval. The maximum number of safe intervals for one cell
is usually significantly smaller than the number of timesteps,
which leads to faster planning and smaller memory require-
ments. On our server, replacing space-time A* with SIPP
reduced the runtime of our software on each instance by up
to 4 times, and we therefore solved 6 more instances within
8 hours and improved the accumulated reward by 4.576.

Lazy Planning Even after we replaced space-time A*
with SIPP, single-train path finding could still be time-
consuming when there are thousands of trains. Figure 5(a)
shows the runtime of SIPP for each train on a Test 36
Level 0 instance that consists of 3,256 trains on a 229×229
grid map. SIPP runs extremely fast in the beginning, spend-
ing approximately 10−5 seconds per train. However, as the
paths of more trains are planned, the runtime of SIPP grows
exponentially because it has to find paths that avoid colli-
sions with larger and larger numbers of paths. In the end,
SIPP spends more than 34 seconds to find a single path.

We addressed this issue with lazy planning where we plan
paths for only some of the trains in the beginning, then let
the trains move, and plan paths for the rest of trains during
execution. Specifically, for each instance, we run PP for at
most 100 seconds and then let the trains start to move. If
there remain trains that do not have paths, we plan paths for

them at timesteps 500, 600, · · · , each time with a runtime
limit of 6 seconds. Figure 5(b) shows the resulting runtime
distribution.The runtime of SIPP per train during execution
was significantly reduced because we increase the departure
times of the trains and SIPP thus needs to avoid collisions
with fewer paths. Although increasing the departure times
of trains may increase their arrival times, lazy planning has
two benefits for large instances with non-zero malfunction
rates: (1) it avoids pushing too many trains into the environ-
ment at once, which can prevent severe traffic jams, as in the
example discussed in Section 4.3, from happening; and (2)
when planning paths during execution, we take the influence
of the malfunctions that have already happened or are hap-
pening into account, so the new paths can result in smaller
arrival times eventually.

On our server, lazy planning reduced the runtime of our
software on each instance by up to 5 times, and we therefore
solved 5 more instances within 8 hours and improved the
accumulated reward by 3.282. In particular, on the instances
that were solved without lazy planning, lazy planning re-
duced the runtime by 3,117 seconds in total and decreased
the accumulated reward by only 0.018.

4.5 Summary
In summary, we use PP with SIPP to generate an initial so-
lution and parallel LNS with leader priority to improve its
quality. The maximum numbers of LNS iterations are deter-
mined by SA. If PP fails to plan paths for all trains within
200 seconds (although we later determined that 100 seconds
would work even better), we use lazy planning to continue
planning paths during execution. During execution, we use
MCP to generate action commands and partial replanning
with SIPP to improve the solution quality when new mal-
functions occur. On the leaderboard, we eventually solved
362 instances with a success rate of 98.5% within 8 hours
and achieved a score (= accumulated reward) of 297.507,
which is 1.160 and 24.168 higher than the scores of the sec-
ond and third teams, respectively. The largest instance we
solved with 100% success rate contains 3,256 trains, and we
solved it within 704 seconds (including both planning and
simulation time) for a reward of 0.802.

5 Deadlocks or Why Reinforcement
Learning Failed to Win the Challenge

The 2020 Flatland Challenge was branded as “Multi Agent
Reinforcement Learning on Trains,” and the prize struc-
ture, awarding prizes for the best Reinforcement Learning
(RL) approaches as well as the best overall approaches, was
clearly meant to encourage RL approaches. Indeed, how to
apply RL to MAPF has also recently been studied in the re-
search community (Sartoretti et al. 2019; Ling, Gupta, and
Kumar 2020). Nevertheless, optimization approaches have
consistently dominated the competition. In Round 1, the best
RL approach got a score of -0.611, ranked 7th on the leader-
board and was 6 times worse than our score. In Round 2, the
best RL approach spent 8 hours to reach a score of 214.15
and ranked 8th on the leaderboard. Our approach reached



Figure 6: Deadlocks. Although the first two blue trains can
pass all red trains (and vice versa), the last blue train will
inevitably be blocked.

Figure 7: A deadlock arises if the leftmost blue train takes
the south rail track.

that score after 15 minutes already. The 2019 Flatland Chal-
lenge had similar outcomes.

The reason for these outcomes might be deadlocks. Since
trains cannot move backward, any two trains entering a
single-track corridor from opposite ends cause a deadlock.
Such deadlocks can subsequently block some part of the rail
network forever, which makes it harder to route the remain-
ing trains and easier to create further deadlocks, increasing
the proportion of the network that is blocked.

Deadlocks are essentially impossible to reason about lo-
cally. While local reasoning may suffice for obvious dead-
locks, more complicated cases of deadlocks can easily arise
when the tracks are densely packed with many trains moving
to different target cells, see Figure 6. The only way to pre-
vent deadlocks is to reason globally about the trains. How-
ever, even with global observations, RL approaches need to
predict future deadlocks, which seems difficult without di-
rectly reasoning about paths, as optimization approaches do.
Consider the first blue train in Figure 6. It will not be blocked
if it enters the south rail track and lets all red trains pass.
Similar reasoning applies to the first red train. But these two
plans are not incompatible. Similarly, if the leftmost blue
train in Figure 7 takes the south rail track at the symmetrical
switch, then a deadlock arises. If it takes the north rail track,
then all trains can leave the map segment without deadlocks.
This issue is difficult to detect from global observations that
do not include the paths of all trains. Even worse, as the
density of trains grows, the number of situations that can
lead to deadlocks increases non-linearly. This issue is, in
our opinion, the reason why optimization approaches, which
rely on global planners, have consistently outperformed RL
approaches across all rounds of both the 2019 and 2020 Flat-
land Challenges.

6 The 2019 Flatland Challenge
The main round (Round 2) of the 2019 Flatland Challenge
was similar to Round 1 of the 2020 Flatland Challenge, ex-
cept that (1) the total number of instances was 250 (instead
of 400); (2) the largest instance contained only 250 trains
(instead of 400); (3) the runtime limit for generating the next

action commands at every timestep was 10 minutes (instead
of 5 minutes at timestep 0 and 5 seconds at other timesteps);
(4) the objective was to maximize the success rate (instead of
the mean normalized reward); and (5) the trains had four dif-
ferent speeds, where a train with “slowness” k = {1, 2, 3, 4}
can only execute one move action every k timesteps (instead
of all trains having “slowness” k = 1). Due to these differ-
ences, it is hard to compare our approach empirically with
the top approaches of the previous year.

While details of the top approaches of the previous year
are not readily available, we gather from the presentations
of the top three teams made at AMLD 20192 that they all
used PP to generate initial collision-free paths. To handle
malfunctions, the first two teams appear to have used MCP
or some similar mechanism with some forms of replanning
(which appear to be different from ours since they do not
have the 5-second runtime limit per timestep), while the
third team appears to have replanned paths for the trains that
encounter new malfunctions and the trains that were affected
by these malfunctions.

One approach from the 2019 Flatland Challenge that is
well described is Complete Path Reservation (CPR) (Wälter
2020). It is an alternative approach to MAPF that runs fast
and is guaranteed to be deadlock-free under malfunctions.
Its main idea is that, after it plans a path for a train, it re-
serves the directions of the cells on the path so that fu-
ture trains cannot traverse these cells in the opposite direc-
tions. This rule prevents any two trains from traversing a
single-track corridor in opposite directions and thus guaran-
tees deadlock-freeness. The reservations are updated on the
fly so that, eventually, it can plan paths for all trains and
move all of them to their target cells within a finite number
of timesteps (that can be larger than Tmax). However, the so-
lution quality of CPR is dramatically worse than that of our
approach. For example, for instances in Test 33 (which con-
tains 1,006 trains), our approach obtained a mean reward of
0.649 with a success rate of 96% on our server, while CPR
obtained a mean reward of 0.406 with a success rate of 66%.
Due to the low success rate of CPR, it needs more time to run
the simulation (as more instances need to be run to timestep
Tmax) and thus eventually solved 9 instances fewer than our
approach. Its final score was also 44.082 lower than that of
our approach. We therefore did not pursue CPR.

7 Conclusions
The Flatland Challenge has been a valuable exercise for us.
The scalability challenges pushed us to develop extremely
fast but reliable algorithms for MAPF planning and replan-
ning. The high-level algorithmic approach that we created
for the challenge is very well suited to the real-world prob-
lem of train planning and replanning. The combination of
prioritized planning and safe interval path planning extends
directly to the real-world problem where sectors are of dif-
ferent lengths and the travel times of trains are different for
each sector. The use of large neighborhood search and par-
tial replanning run fast and result in high-quality solutions.

2https://youtu.be/rGzXsOC7qXg
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