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Abstract

Multi-Agent Path Finding (MAPF) is the problem of plan-
ning collision-free paths for multiple agents in a shared envi-
ronment. In this paper, we propose a novel algorithm MAPF-
LNS2 based on large neighborhood search for solving MAPF
efficiently. Starting from a set of paths that contain collisions,
MAPF-LNS2 repeatedly selects a subset of colliding agents
and replans their paths to reduce the number of collisions
until the paths become collision-free. We compare MAPF-
LNS2 against a variety of state-of-the-art MAPF algorithms,
including Prioritized Planning with random restarts, EECBS,
and PPS, and show that MAPF-LNS2 runs significantly faster
than them while still providing near-optimal solutions in most
cases. MAPF-LNS2 solves 80% of the random-scenario in-
stances with the largest number of agents from the MAPF
benchmark suite with a runtime limit of just 5 minutes, which,
to our knowledge, has not been achieved by any existing al-
gorithms.

1 Introduction
MAPF (Stern et al. 2019) is the problem of planning
collision-free paths for multiple agents in a shared envi-
ronment while minimizing their travel times. It is NP-hard
to solve optimally and the core problem of many applica-
tions, such as in warehouse automation, traffic management,
and robotics. Existing MAPF algorithms include system-
atic search algorithms (that are exponential-time but guar-
anteed to find optimal or bounded-suboptimal solutions),
rule-based algorithms (that are usually polynomial-time and
complete), and prioritized algorithms (that run fast empir-
ically but are neither complete nor optimal). When facing
challenging MAPF instances, however, the first two types
of algorithms suffer from either memory-outs or time-outs
while the last type suffers from incompleteness. One suc-
cessful technique that can improve the chance of finding so-
lutions is to restart the search with a new random seed (Ben-
newitz, Burgard, and Thrun 2001; Cohen et al. 2018).

In this work, we propose a different way to improve the
chance of finding solutions. Instead of giving up on the pre-
vious search effort and restarting from scratch, we make use
of the infeasible set of paths produced by a MAPF algorithm
and try to repair it via Large Neighborhood Search (Shaw
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1998). We call the new algorithm MAPF-LNS2. MAPF-
LNS2 starts from a set of paths that have collisions and re-
peatedly replans subsets of paths to reduce the overall num-
ber of collisions until the paths become collision-free. By
using Prioritized Planning (PP) (Silver 2005) with an effi-
cient single-agent pathfinding algorithm to plan and replan
paths and a variety of heuristics to select subsets of paths,
MAPF-LNS2 can solve easy instances as fast as PP and hard
instances significantly faster than PP and other MAPF algo-
rithms. Even when MAPF-LNS2 fails to find collision-free
paths within the runtime limit, it usually returns paths with
only a few collisions, which is acceptable in many appli-
cations (Belov et al. 2020). The main contributions of this
work are twofold:

1. We propose an efficient single-agent pathfinding algo-
rithm SIPPS based on SIPP (Phillips and Likhachev
2011) for finding a short path that avoids collisions with
a given set of paths and minimizes the number of col-
lisions with another given set of paths. We show that
SIPPS runs 5 times (or more) faster than Space-Time A*,
an A*-based algorithm widely used by many MAPF al-
gorithms. Thus, we demonstrate that SIPPS can speed up
not only MAPF-LNS2 but also many other MAPF algo-
rithms, such as EECBS (Li, Ruml, and Koenig 2021).

2. We propose a suboptimal MAPF algorithm MAPF-LNS2
that is fast, scalable, and memory-efficient. Although
it lacks theoretical guarantees, it empirically signifi-
cantly outperforms a variety of state-of-the-art MAPF
algorithms, including Prioritized Planning with random
restarts, EECBS, and PPS (Sajid, Luna, and Bekris
2012), in terms of both success rates and runtimes.
MAPF-LNS2 solves 80% of the random-scenario in-
stances with the largest number of agents from the MAPF
benchmark suite with a runtime limit of just 5 minutes,
which, to our knowledge, has not been achieved by any
existing algorithms. Moreover, when given a longer run-
time limit of one hour, MAPF-LNS2 can scale to 8,000
agents on a congested warehouse map.

2 Background
Definition 1 (Multi-Agent Path Finding). We are given a
connected graph G = (V,E), a set of m agents A =
{a1, · · · , am}, and a start vertex si ∈ V and a target vertex



gi ∈ V for each agent ai ∈ A. At each discrete timestep, an
agent either moves to an adjacent vertex or waits at its cur-
rent vertex. A collision happens when two agents occupy the
same vertex or traverse the same edge in opposite directions
at the same timestep. A plan is a set of paths {p1, · · · , pm}
that move the agents from their start vertices to their target
vertices. Each agent remains at its target vertex after it com-
pletes its path. A plan is feasible if it contains no collisions
and infeasible otherwise. Our task is to find a feasible plan
(also called a solution) with a small sum of costs

∑m
i=1 |pi|,

i.e., the sum of the travel times of the agents.

Due to the many applications of MAPF, numerous MAPF
algorithms have been proposed in recent years. State-of-
the-art optimal and bounded-suboptimal algorithms, such as
CBSH2-RTC (Li et al. 2021c), Lazy CBS (Gange, Hara-
bor, and Stuckey 2019), BCP (Lam and Le Bodic 2020),
and EECBS (Li, Ruml, and Koenig 2021), usually deploy
a strategy called CBS (Sharon et al. 2015), that uses a
single-agent pathfinding algorithm to plan a path for each
agent first and resolves collisions afterwards. They provide
quality guarantees for their solutions but do not scale to
large instances as their runtimes are exponential in the num-
ber of agents. State-of-the-art unbounded-suboptimal algo-
rithms include prioritized algorithms, such as prioritized
planning (Erdmann and Lozano-Perez 1986) and PBS (Ma
et al. 2019), and rule-based algorithms, such as PPS (Sajid,
Luna, and Bekris 2012), PIBT (Okumura et al. 2019), and
WSCaS (Wang and Rubenstein 2020). Prioritized algo-
rithms plan paths based on a priority ordering of the agents
where lower-priority agents need to avoid collisions with
higher-priority agents. They are simple and run extremely
fast but can fail to find any solutions for challenging in-
stances due to their incompleteness. Rule-based algorithms
move agents toward their target vertices via simple move-
ment rules. Many of them are polynomial-time and complete
in theory but can still fail to find solutions within a reason-
able time for large instances.

The idea of MAPF-LNS2 is that, when a MAPF algorithm
fails, we obtain an infeasible plan from the algorithm and
repair it. For instance, for a CBS-style algorithm, each high-
level search node contains a plan, so we pick the plan with
the minimum number of collisions. For a prioritized algo-
rithm, it fails when there is no path for an agent that avoids
collisions with the paths of higher-priority agents. We retain
the already-planned paths and plan paths for the remaining
agents that minimize the number of collisions (instead of
avoiding collisions) with the already-planned paths.

3 MAPF-LNS2
Large Neighborhood Search (LNS) (Shaw 1998) is a popu-
lar local search technique to improve the solution quality for
combinatorial optimization problems. Starting from a given
solution, it destroys part of the solution, called a neighbor-
hood, and treats the remaining part of the solution as fixed.
It then repairs the solution and replaces the old solution if
the repaired solution is better. This procedure is repeated
until some stopping criterion is met. MAPF-LNS (Li et al.
2021a) is an anytime MAPF framework that uses LNS to

improve the quality of a solution obtained from a MAPF al-
gorithm over time. It repeatedly selects a subset of agents
and replans their paths. Motivated by this work, we propose
MAPF-LNS2 that can efficiently find a solution (instead of
improving a given solution) for a MAPF instance.

To begin with, MAPF-LNS2 calls a MAPF algorithm to
solve the instance and obtains a (partial or complete) plan
from the MAPF algorithm. For each agent that does not yet
have a path, MAPF-LNS2 plans a path for it that minimizes
the number of collisions with the existing paths. Details of
finding such paths are introduced in Section 4. MAPF-LNS2
then repeats a repairing procedure until the plan P becomes
feasible. At each iteration, MAPF-LNS2 selects a subset of
agents As ⊆ A by a neighborhood selection method (see
Section 5). We denote the paths of the agents inAs as P−. It
then calls a modified MAPF algorithm to replan the paths of
the agents in As to minimize the number of collisions with
each other and with the paths in P \P−. Specifically, MAPF-
LNS2 uses a modification of Prioritized Planning (PP) as the
modified MAPF algorithm.1 PP assigns a random priority
ordering to the agents in As and replans their paths one at a
time according to the ordering. Each time, it calls a single-
agent pathfinding algorithm (see Section 4) to find a path for
an agent that minimizes the number of collisions with the
new paths of the higher-priority agents in As and the paths
in P \ P−. We denote the new paths of the agents in As as
P+. Finally, MAPF-LNS2 replaces the old plan P with the
new plan (P \ P−) ∪ P+ iff the number of colliding pairs
(CP) of the paths in the new plan is no larger than that of the
old plan.

4 Pathfinding with Dynamic Obstacles
To make MAPF-LNS2 efficient, we need an efficient single-
agent pathfinding algorithm that can find a shortest path
for an agent that minimizes the number of collisions with
a given set of paths. Here, we formulate a more general
problem called Pathfinding with Mixed Dynamic Obstacles
(PMDO). We use half-open interval notation [a, b) to repre-
sent the contiguous set of integers {x | a ≤ x ∧ x < b}.
Definition 2 (Pathfinding with Mixed Dynamic Obstacles).
We call (v, t), (e, t), and (v, [t,∞)) a vertex, edge, and tar-
get obstacle indicating that vertex v ∈ V , edge e ∈ E, and
vertex v ∈ V are occupied at timestep t, from timestep t− 1
to timestep t, and at and after timestep t, respectively. Given
a graph G = (V,E), a start vertex s ∈ V , a target vertex
g ∈ V , and two finite sets of obstacles Oh (called hard ob-
stacles) and Os (called soft obstacles), our task is to find a
path p from s to g that does not collide with any hard ob-
stacles. We assume that s at timestep 0 is not occupied by
any hard obstacles, and g at timestep∞ is not occupied by
any hard obstacles either, i.e., there is finite time from which
no more hard obstacles occupy g. The objective is to min-
imize the number of soft collisions, i.e., collisions with the
soft obstacles, and break ties by the travel time |p|.

1We have tried to adapt two other MAPF algorithms to replan
the paths, namely Greedy CBS (Barer et al. 2014) and PBS (Ma
et al. 2019). But both of them perform worse than PP empirically.



Figure 1: Examples. a1 follows the arrow without waiting.

4.1 Space-Time A*
A straightforward algorithm for PMDO is space-time A*,
which is used by many MAPF algorithms such as ID (Stan-
dley and Korf 2011) and ECBS (Barer et al. 2014). Space-
time A* performs an A* search on a time-expanded graph
where each state in the graph is defined by a vertex v and
a timestep t, representing the agent being at vertex v at
timestep t. The agent can move from state (v, t) to state
(v′, t′) iff ((v, v′) ∈ E ∨ v = v′) ∧ t′ = t+ 1 holds and the
move action does not collide with any obstacles in Oh. In
addition to the regular g-, h-, and f -values, each node in the
search tree of space-time A* maintains a c-value, that rep-
resents the number of collisions of the partial path from the
root node to the current node with obstacles in Os. To find
the optimal solution of a PMDO instance, we sort the nodes
in the open list in ascending order of their c-values, breaking
ties by their f -values.

While space-time A* can solve PMDO correctly, unfor-
tunately it cannot do so efficiently. Consider the instance
shown in Figure 1(left). If agent a2 needs to plan a path that
minimizes the number of collisions with the path of agent
a1, space-time A* needs to expand all nodes whose c-values
are zero before finding the optimal path, that has one col-
lision with a1 at C2 at timestep 2 (because a1 reaches C2
at timestep 1 and remains there forever). However, there is a
potentially infinite number of nodes that have zero collisions
as the time dimension is unbounded. So space-time A* may
not return a solution in finite time. Although one can fix this
issue by restricting space-time A* to generating states only
with timesteps no greater than the maximum of the timesteps
of the obstacles max{t ∈ N | (v, t) ∈ Oh ∪ Os ∨ (e, t) ∈
Oh∪Os∨(v, [t,∞)) ∈ Oh∪Os} and switching to standard
A* (without the time dimension) afterward (Ma et al. 2019),
the number of nodes it has to expand can still be large.

4.2 SIPPS
Safe Interval Path Planning (SIPP) (Phillips and Likhachev
2011) is a fast variant of space-time A* that uses time in-
tervals instead of timesteps to represent the time dimension
of the problem. It performs an A* search on a time-interval
graph where each state in the graph is defined by a vertex
and a safe (time) interval, representing that a particular ver-
tex is free of hard obstacles during the time interval. For
each state with vertex v and safe interval [a, b), SIPP al-
ways prefers the (partial) path that arrives at v as early as
possible within [a, b) and then waits at v if necessary, since
this allows SIPP to prune paths that arrive at v at a later
timestep within [a, b) without losing optimality. SIPP runs
significantly faster than space-time A* empirically (Phillips

and Likhachev 2011; Li et al. 2021b), yet it cannot handle
soft obstacles. We thus generalize SIPP to Safe Interval Path
Planning with Soft constraints (SIPPS) for solving PMDO.2

Safe Intervals A safe interval for a vertex is a contiguous
period of time during which (1) there are no hard vertex ob-
stacles and no hard target obstacles, and (2) there is either
(a) a soft vertex or target obstacle at every timestep or (b)
no soft vertex obstacles and no soft target obstacles at any
timestep. We build a safe interval table T , that maps each
vertex v ∈ V to a sequence of safe intervals T [v]. To build
T [v], we look at all hard and soft vertex and target obstacles
at v and divide interval [0,∞) into a minimum set of dis-
joint safe intervals in T [v] in chronological order. We do not
consider edge obstacles here as they are handled elsewhere.

SIPPS Nodes A node n in the search tree of SIPPS node n
consists of four elements, namely a vertex n.v, a safe inter-
val [n.low, n.high) where n.low is also called the earliest
arrival time, an index n.id indicating that the safe interval
is (a subset of) the id-th safe interval in T [n.v] (i.e., inter-
val T [n.v][n.id]), and a Boolean flag n.is goal indicating
whether the node is a goal node (set to false by default).
The f -value of node n is the sum of its g-value and h-value,
where the g-value is set to n.low and the h-value is a lower
bound on the minimum travel time from vertex n.v to vertex
g. Each node n also maintains a c-value, which is the (un-
derestimated) number of the soft collisions of the partial path
from the root node to node n, i.e., c(n) = c(n′) + cv + ce,
where n′ is the parent node of n, cv is 1 if the safe interval of
n contains soft vertex/target obstacles and 0 otherwise, and
ce is 1 if ((n′.v, n.v), n.low) ∈ Os and 0 otherwise. If n is
the root node (i.e., n′ does not exist), c(n) = cv . In princi-
ple, an agent may encounter more than one soft collision if
it waits within a safe interval that contains soft vertex obsta-
cles. We ignore such cases for efficiency. More discussions
can be found in the Theoretical Analysis paragraph.

Main Algorithm Algorithm 1 shows the pseudo-code of
SIPPS. To begin with, we build T and generate the root
node with start vertex s and the first safe interval T [s][1]
from T [s] and index 1 [Lines 1 and 2]. T is a lower bound
on the travel time [Line 3]. If we have hard vertex obstacles
at target vertex g, then T is set to one plus the maximum
timestep of all hard vertex obstacles at g [Line 4] since the
agent cannot complete its path before all hard vertex obsta-
cles at g have disappeared. Q and P are regular open and
closed lists, respectively [Line 6]. In order for SIPPS to find
the path with the minimum number of soft collisions (and
break ties with the minimum travel time), Q sorts its nodes
in ascending order of their c-values, breaking ties in ascend-
ing order of their f -values. At every iteration, we pop a node
n from Q [Line 8] and return its corresponding path if it is
a goal node [Line 9]. Function extractPath(n) constructs a
path by repeatedly moving to the parent node until the root
node is found. The reversed sequence of vertices of the vis-
ited nodes is the sequence of vertices visited by the path,

2To the best of our knowledge, SCIPP (Cohen et al. 2019) is the
only existing SIPP variant that handles soft obstacles. However, it
cannot solve PMDO as it cannot handle hard or soft edge obstacles.



Algorithm 1: SIPPS

1 T ← buildSafeIntervalTable(V,Oh,Os);
2 root← Node(s, T [s][1], 1, false); // 1 and false

indicate that root.id = 1 and root.is goal = false
3 T ← 0; // Lower bound on travel time
4 if ∃t : (g, t) ∈ Oh then

T ← max{t | (g, t) ∈ Oh}+ 1;
5 compute g-, h-, f -, and c-values of root;
6 Q← {root}; P ← ∅; // Initialize open and closed

lists
7 while Q is not empty do
8 n← Q.pop(); // Node with the smallest c-value
9 if n.is goal then return extractPath(n);

10 if n.v = g ∧ n.low ≥ T then
11 cfuture ← |{(g, t) ∈ Os | t > n.low}|;
12 if cfuture = 0 then return extractPath(n);
13 n′ ← a copy of n with is goal set to true;
14 c(n′)← c(n′) + cfuture;
15 INSERTNODE(n′, Q, P ); // Algorithm 3
16 EXPANDNODE(n,Q, P, T ); // Algorithm 2
17 P ← P ∪ {n};
18 return “No Solution”;

with their timesteps being the earliest arrival time of each
node. If the difference between the earliest arrival times of
two adjacent nodes is larger than one, we add wait actions
in between accordingly so that the agent reaches the vertex
of the former node at the earliest arrival time of the former
node, waits there, and then move to the vertex of the latter
node at the earliest arrival time of the latter node. If n is at
target vertex g with n.low ≥ T [Lines 10 to 15], it can be
a goal node, but its c-value does not consider the number of
additional soft collisions cfuture that the agent encounters
after timestep n.low during staying at g forever. We thus
terminate only if cfuture is 0 and generate a goal node that
considers cfuture otherwise. Finally, we expand n [Line 16]
and insert it into the closed list P [Line 17].

Expanding Nodes When expanding a node n (see Algo-
rithm 2), we first store all reachable vertex-index pairs from
vertex n.v at a timestep within interval [n.low, n.high) in
I [Lines 1 to 5]. A vertex-index pair (v, id) is reachable
iff the agent can move to v at a timestep within T [v][id]
(i.e., T [v][id] overlaps with [n.low + 1, n.high + 1)) or
wait at v from interval [n.low, n.high) to interval T [v][id]
(i.e., n.high = T [v][id].low). For each vertex-index pair
(v, id) ∈ I [Line 6], we use [low, high) to represent the
corresponding interval [Line 7]. We update low to the ear-
liest arrival time at v within [low, high) without colliding
with any hard edge obstacles. We jump to the next iteration
if low does not exist [Line 9]. We then find the earliest arrival
time low′ at v within [low, high) without colliding with any
hard or soft edge obstacles. If low′ exists and low′ > low
[Lines 11 to 15], then the agent will collide with a soft edge
obstacle if it arrives at v during [low, low′) and will not if it
arrives at low′ (and waits at v if necessary). Thus, we gen-

Algorithm 2: EXPANDNODE(n,Q, P, T )
1 I ← ∅;
2 foreach v : (n.v, v) ∈ E do
3 I ← I ∪ {(v, id) |

T [v][id]∩ [n.low+1, n.high+1) 6= ∅, id ∈ N};
4 if ∃id : T [n.v][id].low = n.high then
5 I ← I ∪ {(n.v, id)}; // Indicates wait actions
6 foreach (v, id) ∈ I do
7 [low, high)← T [v][id];
8 low ← earliest arrival time at v within

[low, high) without colliding with edge
obstacles in Oh;

9 if low does not exist then continue;
10 low′ ← earliest arrival time at v within

[low, high) without colliding with edge
obstacles in Oh ∪ Os;

11 if low′ exists ∧ low′ > low then
12 n1 ← Node(v, [low, low′), id, false);
13 INSERTNODE(n1, Q, P ) ; // Algorithm 3
14 n2 ← Node(v, [low′, high), id, false);
15 INSERTNODE(n2, Q, P ); // Algorithm 3
16 else
17 n3 ← Node(v, [low, high), id, false);
18 INSERTNODE(n3, Q, P ); // Algorithm 3

Figure 2: All possible combinations of the relative positions
of the safe intervals of two nodes n1 and n2 with the same
identity. The timeline is from left to right. Without loss of
generality, we assume that c(n1) < c(n2) in (a), (b), and (d)
and c(n1) ≤ c(n2) in (c), (e), and (f). We do not consider
the cases of c(n1) = c(n2) in (a), (b), and (d) because they
are identical to the cases of c(n1) = c(n2) in (f), (e), and
(c), respectively.

erate two child nodes, one with safe interval [low, low′) and
one with safe interval [low′, high). The former child node
has one more collision than the latter one. If low′ does not
exist or low′ = low [Lines 16 to 18], then we generate one
child node as usual (note that the case when low′ does not
exist results in one more collision in the child node than the
case when low′ = low).

Inserting Nodes We say that two nodes n1 and n2 have
the same identity, denoted as n1 ∼ n2, iff n1.v = n2.v,
n1.id = n2.id, and n1.is goal = n2.is goal. We say
that n1 (weakly) dominates n2, denoted as n1 � n2, iff
n1 ∼ n2, [n1.low, n1.high) ⊇ [n2.low, n2.high), and
c(n1) ≤ c(n2). We are interested in dominance because,



Algorithm 3: INSERTNODE(n,Q, P )

1 compute g-, h-, f -, and c-values of n;
2 N ← {q ∈ Q ∪ P | q ∼ n}; // Nodes identical to n
3 foreach q ∈ N do
4 if q.low ≤ n.low ∧ c(q) ≤ c(n) then // q � n
5 return; // No need to generate n
6 else if n.low ≤ q.low∧ c(n) ≤ c(q) then// n � q
7 delete q from Q and P ; // Prune q
8 else if n.low < q.high ∧ q.low < n.high then
9 if n.low < q.low then n.high = q.low;

10 else q.high = n.low;

11 insert n into Q;

if node n1 dominates node n2 (e.g., Figure 2(c)), we can
prune n2 without loss of completeness. Moreover, we know
from Lines 6 to 18 in Algorithm 2 that a node n satisfies
n.high < T [n.v][n.id].high iff it is generated on Line 12,
i.e., there is a twin node n′ with n′ ∼ n, [n′.low, n′.high) =
[n.high, T [n.v][n.id].high), and c(n′) = c(n) − 1. That
is to say, if the situations in Figures 2(e) and (f) occur, al-
though n1 does not dominate n2, there exists a twin node
n3 of n1 such that n1 ∼ n2 ∼ n3, [n1.low, n1.high) ∪
[n3.low, n3.high) ⊇ [n2.low, n2.high), and c(n3) <
c(n1) ≤ c(n2). We can thus prune n2. Therefore, we gen-
eralize the definition of dominance as follow. We say that
node n1 (weakly) dominates node n2, denoted as n1 � n2,
iff n1 ∼ n2, n1.low ≤ n2.low, and c(n1) ≤ c(n2). We
can prune a node if it is dominated by another node. For
situations when two nodes with the same identity have over-
lapping intervals but no dominance relationship (as in Fig-
ures 2(b) and (d)), the intersection of the two intervals would
be explored twice if we expanded both nodes. We know that
the node with the smaller lower bound always has the larger
c-value (since, otherwise, the two nodes would have a domi-
nance relationship), so we can shrink the interval of the node
with the smaller lower bound by updating its upper bound to
the lower bound of the the interval of the other node. This
avoids the duplicate search effort without loss of complete-
ness. The only unconsidered situation is the one shown in
Figure 2(a), in which case we have to keep both nodes. In or-
der to make SIPPS efficient, we use this analysis in SIPPS.
As shown in Algorithm 3, we first compute the values of
node n [Line 1] and collect all nodes in Q and P that have
the same identity as n [Line 2]. We need to compare with
each such node so as to avoid duplicate search effort. Con-
sider a node q [Line 3]. If it dominates n [Line 4], then we
do not need to generate n and thus terminate [Line 5]. If it
is dominated by n [Line 6], then we do not need q and thus
remove it from Q and P [Line 7]. Otherwise, if the safe in-
tervals of the two nodes overlap [Line 8], then we reset the
upper bound of the interval with the smaller lower bound to
the lower bound of the other interval [Lines 9 and 10].

Heuristics To achieve high efficiency, most MAPF algo-
rithms use the distance d(n.v, g) (i.e., the length of the short-
est path) from n.v to g as the h-value of node n when

they plan paths for single agents, where the distance ta-
ble d is computed during preprocessing. Such a heuristic
is informed as long as the travel time of the optimal path
p∗ is not too much larger than d(s, g). Unfortunately, this
is not always the case for PMDO for two reasons: (1) T
(which is a lower bound on |p∗|) can be substantially larger
than d(s, g) due to hard obstacles at target vertices; and (2)
T ′ = max{t | (g, t) ∈ Oh∪Os}+1 (which is a lower bound
on |p∗| when p∗ has zero soft collisions) can be substantially
larger than d(s, g). Therefore, we compute the h-value of a
non-goal node n as

h(n) =

{
max{d(n.v, g), T ′ − g(n)}, c(n) = 0

max{d(n.v, g), T − g(n)}, c(n) ≥ 1,

where T is computed on Lines 3 and 4. The h-value of a
goal node is, of course, 0.

Theoretical Analysis Below are two theorems for SIPPS.
The proofs are omitted as they follow the proofs for SIPP.

Theorem 1. SIPPS guarantees to return a path if one exists
and “No Solution” otherwise.

Theorem 2. SIPPS guarantees to return a shortest path with
zero soft collisions if one exists.

One limitation of SIPPS is that, if no zero-soft-collision
path exists, SIPPS may return a path whose number of soft
collisions is larger than minimum because the c-value ig-
nores the soft collisions that occur when the agent waits
within a safe interval that contains soft vertex obstacles. This
approximation is acceptable since the minimization of the
number of collisions itself is an approximation of the CP
minimization (i.e., minimization of the number of colliding
pairs) used by MAPF-LNS2.3 We have considered to mini-
mize CP in SIPPS directly, but it is extremely inefficient as
we have to keep track of the set of agents that the partial
path from the root node to each node collides with, which
substantially increases the search space.

Applications Although SIPPS is designed for MAPF-
LNS2, it can be used by a broad family of MAPF al-
gorithms as PMDO is a common problem that needs to
be solved by many MAPF algorithms. Examples include
the optimal algorithms ID (Standley and Korf 2011) and
CBS (Sharon et al. 2015), the bounded-suboptimal algo-
rithm ECBS (Barer et al. 2014), and the prioritized algo-
rithm PBS (Ma et al. 2019) as well as their variants. With
small changes to the priority function used by the open list
of SIPPS (e.g., in CBS, prioritizing nodes with smaller f -
values and breaking ties towards smaller c-values), SIPPS
can speed up these MAPF algorithms while preserving their
solution quality guarantees. Moreover, unlike space-time

3Empirically, We ran MAPF-LNS2 on the random map with
400 agents using the setup described in Section 6 and collected
the results of 84,739 SIPPS runs. Among them, more than 95% of
runs find the minimum-collision paths, and 4% of runs find paths
that contain only one more collision than the minimum (where the
minimum-collision paths are found by space-time A*). In fact, al-
though space-time A* guarantees to find minimum-collision paths,
their CPs are occasionally larger than those by SIPPS.



A*, SIPPS can be applied to continuous-time settings, so it
can also speed up Continuous-Time CBS (CCBS) (Andrey-
chuk et al. 2019) and allows one to generalize CCBS to its
suboptimal variants, e.g., continuous-time ECBS.

5 Neighborhood Selection
The selection of good neighborhoods is critical to the suc-
cess of LNS. Here, we present three neighborhood selection
methods and introduce adaptive LNS that intelligently com-
bines these methods. Each method derives from a different
motivation. Although there might be multiple implementa-
tions for each motivation, we present the one that works well
for us and leave the exploration of other implementations for
future work. We denote the current plan as P , the neighbor-
hood as As, and the size of As as a predefined parameter N .
Gc = (Vc, Ec) is the collision graph where Vc = {i | ai ∈
A} and Ec = {(i, j) | pi ∈ P collides with pj ∈ P}. We
denote the degree of i ∈ Vc as deg(i).

Collision-Based Neighborhoods A straightforward idea
for generating neighborhoods that can potentially reduce CP
is to select a subset of agents whose current paths collide
with each other. To implement this idea, we first select a ran-
dom vertex v from Vc with deg(v) > 0 and find the largest
connected component G′c = (V ′c , E

′
c) of Gc that contains v.

There are two cases:

1. If |V ′c | ≤ N , we put all agents av with v ∈ V ′c into As

and repeatedly add additional agents that might collide
with some agents in As to As until |As| = N . At each
iteration, we select a random agent from As and let it
perform a random walk starting from a random position
on its path and stop when it collides with another agent,
which is then added to As.

2. Otherwise, we select N vertices from V ′c via a random
walk on G′c starting from v and put the corresponding
agents into As.

Failure-Based Neighborhoods The second idea is to rea-
son about why we failed to find collision-free paths for some
agents in the previous LNS iterations. Finding a path for an
agent ai that does not collide with a given set of paths is
an essential problem that is repeatedly solved in PP. Thus,
previous work on PP has already studied this problem thor-
oughly (Cáp et al. 2015). Briefly speaking, there are two sce-
narios that result in failures, namely, (A) ai is blocked by
the agents from the given set of paths “sitting” at their tar-
get vertices surrounding ai (see a2 in Figure 1(left)), i.e., all
possible paths for ai to reach gi are blocked by some target
obstacles, and (B) ai is “run over” by the given set of paths
at (or around) si during early timesteps (see Figure 1(right)),
i.e, the agent has no way to go. Therefore, the failure-based
neighborhood focuses on an agent ai that has collisions and
a set of agents whose paths visit si or whose target vertices
are on some path from si to gi. Formally, we first select an
agent ai ∈ A with a probability proportional to deg(i) (i.e.,
proportional to the number of agents that agent ai collides
with) and add ai to As. We then collect two sets of agents
As = {aj ∈ A | pj ∈ P visits si} and Ag = {aj ∈ A | p

visits gj},where p is the path from si to gi that minimizes
|Ag|. There are three cases:
1. If |As ∪ Ag| = 0, then we terminate and return As, be-

cause we are guaranteed to find a path for ai that does
not collide with any other agents as ai can sit at si until
all other agents reach their target vertices and then move
to gi via path p.

2. Otherwise, if |As∪Ag| < N −1, then we add the agents
in As ∪ Ag to As and then repeatedly add additional
agents toAs whose target vertices are visited by the paths
of some agents in As until |As| = N . At each itera-
tion, we select a random agent aj from As and collect
the agents whose target vertices are visited by pj ∈ P .
We select a random agent from the collected agents and
add it to As.

3. Otherwise, we addN−1 agents toAs using the following
rule:

(a) If |As| = 0, we add N −1 random agents in Ag to As.
(b) Otherwise, if |Ag| ≥ N − 1, we add the agent in As

that visits si the earliest and N − 2 random agents in
Ag to As.

(c) Otherwise, we add all agents in Ag and the first N −
1− |Ag| agents in As (from the sequence of agents in
ascending order of the timesteps when their paths visit
si) to As.

This rule prefers agents in Ag slightly over agents in As be-
cause we find empirically that Scenario (A) occurs more fre-
quently than Scenario (B).

Random Neighborhoods Generating neighborhoods ran-
domly may sound naı̈ve but has been shown to be extremely
effective for many problems (Demir, Bektas, and Laporte
2012; Song et al. 2020; Li et al. 2021a). Our third idea there-
fore is to select N agents randomly, namely each ai with a
probability proportional to deg(i) + 1. We add one here in
order to give the agents who do not collide with others a
chance to be selected.

Adaptive LNS (ALNS) ALNS (Ropke and Pisinger 2006)
is a strong variant of LNS. It makes use of multiple neigh-
borhood selection methods by recording their relative suc-
cess in improving solutions and generating the next neigh-
borhood with the most promising method. Formally, we
maintain a weight wi for each neighborhood selection
method i that represents its relative success in reducing the
CP. Initially, we set all wi to 1. At each iteration, we select
a method i with probability wi/

∑
j wj to generate a neigh-

borhood and replan the paths. After replanning, we set wi to
γ ·max{0, c−− c+}+(1−γ) ·wi, where c− and c+ are the
CPs of the plans before and after replanning, respectively,
and γ ∈ [0, 1] is a user-specified reaction factor that controls
how quickly the weights react to the changes in the relative
success in reducing the CP. We use γ = 0.1 empirically. The
weights for the other methods remain the same.

6 Experiments
We compare MAPF-LNS2 against a representative set
of scalable state-of-the-art MAPF algorithms, namely the



m
Success rate Runtime (s) Runtime per call (ms)

A* SIPPS A* SIPPS A* SIPPS
250 1.00 1.00 3.37 0.64 5.49± 17.19 1.11± 1.79
300 1.00 1.00 15.99 2.67 10.9± 28.72 1.94± 2.79
350 0.88 1.00 >68 9.25 15.83± 43.52 2.75± 3.72
400 0.68 0.88 >162 >78 15.28± 40.95 3.04± 4.23

Table 1: Comparing SIPPS against A* on the random map.
Runtime per call is the average runtime of a single A*/SIPPS
search.

m
Success rate Runtime (s)

R F C A R F C A
250 1.00 1.00 1.00 1.00 0.80 0.59 0.79 0.64
300 1.00 1.00 1.00 1.00 13.13 3.41 3.09 2.67
350 1.00 0.96 1.00 1.00 32.57 >22 9.11 9.25
400 0.48 0.60 0.76 0.88 >192 >155 >128 >78

Table 2: Comparing ALNS (denoted as A) against random
(denoted as R), failure-based (denoted as F), and collision-
based (denoted as C) neighborhoods on the random map.

bounded-suboptimal algorithm EECBS, the prioritized al-
gorithms PP and PP with random restarts (PPR) (where we
repeatedly rerun PP with a random priority ordering until
it finds a solution), and the rule-based algorithm PPS. In
addition, in order to show the effectiveness of SIPPS for
speeding up MAPF algorithms other than MAPF-LNS2, we
implement a variant of EECBS (denoted as EECBS*) that
uses SIPPS instead of space-time A*. Both PP and PPR use
SIPP to plan paths for single agents (they do not use SIPPS
as their underlying single-agent problem does not have soft
obstacles). If not specified otherwise, MAPF-LNS2 uses PP
to find the initial plans, ALNS to generate neighborhoods
of size N = 8, and SIPPS to plan paths for single agents.
All implementations4 were written in C++ and share the
same code base. We use the random-scenario instances on
all 33 maps from the MAPF benchmark suite5, yielding 25
instances per map and number of agents. We conduct ex-
periments on Amazon EC2 “m4.xlarge” instances with 16
GB of memory. If not specified, the runtime limit is 5 min-
utes. Due to the space limit, we report results only on the
random map random-32-32-20 in Experiments 1-3 and the
warehouse map warehouse-20-40-10-2-2 in Experiment 5.

Experiment 1 compares two PMDO algorithms. Table 1
compares MAPF-LNS2 with SIPPS against MAPF-LNS2
with space-time A* (or A* for short) in terms of their suc-
cess rates (i.e., percentages of instances solved within the
runtime limit), average runtimes (with 5 minutes used for
unsolved instances), and average runtimes per SIPPS/A*
call with their standard deviations. SIPPS clearly dominates
A* with a speedup of more than 5 times. It is also more sta-
ble, e.g., the largest runtime per call for SIPPS is 51ms while
that of A* is 524ms (not shown in the table). This difference
is even larger on larger maps.

4https://github.com/Jiaoyang-Li/MAPF-LNS2
5https://movingai.com/benchmarks/mapf/

m
Success rate Runtime (s) #runs Init
PP PPR LNS PPR LNS PPR LNS CP

100 0.56 1.00 1.00 0.02 0.01 179 105 0.6
200 0.08 1.00 1.00 6.69 0.14 47,114 262 5
300 0.00 0.00 1.00 >300 2.67 - 1,285 61
400 0.00 0.00 0.88 >300 >78 - - 316

Table 3: Comparing MAPF-LNS2 (denoted as LNS) against
PP and PPR on the random map. We omit the runtime of PP
as it is equal to the runtime of PPR and MAPF-LNS2 for any
instance it was able to solve. #runs is the average number of
times for which we run SIPP(S). Init CP is the average CP
of the initial plan.

Experiment 2 compares four neighborhood selection
methods. Table 2 compares MAPF-LNS2 with ALNS
against MAPF-LNS2 with the three individual neighbor-
hood selection methods. As expected, ALNS performs the
best as it combines the strengths of the other methods and is
able to use a larger variety of neighborhoods. We also exper-
imented with different neighborhood sizes N = 4, 8, 16, 32
but omit the results since they are similar to those of the pre-
vious work (Li et al. 2021a): there is no global winner, and
larger neighborhoods have larger chances to find better so-
lutions but require more time to replan, resulting in fewer
iterations within the runtime limit.

Experiment 3 compares MAPF-LNS2 against other PP-
based algorithms, namely PP and PPR. MAPF-LNS2 can be
viewed as a PP-based algorithm as it uses PP to both find
initial plans and replan. As shown in Table 3, MAPF-LNS2
performs the best. It rapidly reduces the CP of the initial plan
generated by PP and, as a result, substantially improves the
success rate of PP. Its LNS framework is a more efficient ap-
proach than random restarts since MAPF-LNS2 requires sig-
nificantly fewer runs of single-agent pathfinding than PPR,
which in turn results in significantly higher success rates and
lower runtimes. Although MAPF-LNS2 failed to solve 3 in-
stances with 400 agents, its final plans in these cases have
only 1, 1, and 2 CPs (not shown in the table).

Experiment 4 compares MAPF-LNS2 against the state-
of-the-art algorithms PPR, PPS, and EECBS (with a sub-
optimality guarantee of 5) as well as our EECBS* (also
with a suboptimality guarantee of 5).6 We use the instances
in the random scenario on all 33 maps from the bench-
mark suite with the largest number of agents, i.e., m =
min{0.5|V |, 1000} for each map. Figure 3 shows the re-
sults for each instance, and Figure 4 summarizes the suc-
cess rates. MAPF-LNS2 solves more than 60% of instances
within 1 minute and 80% of instances within 5 minutes.
Its success rate is always the highest for all runtime lim-
its. The instances that MAPF-LNS2 fail to solve are mostly
on highly congested maps, such as the maze and room
maps, and not solved by the other algorithms either in most

6We picked 5 as the suboptimality guarantee because we in-
tended to choose a large enough suboptimality guarantee such that,
if EECBS fails to solve an instance that MAPF-LNS2 has solved,
it is due to the scalability limit of EECBS rather than it using a
too-small suboptimality guarantee.



Figure 3: Runtime and solution quality on all maps. Suboptimality is overestimated by
∑m

i=1 |pi|/
∑m

i=1 d(si, gi).

Figure 4: Success rates on all maps.

cases. Although PPS solves a few instances that are not
solved by MAPF-LNS2, its solution quality is always sub-
stantially worse than that of MAPF-LNS2 (and the other al-
gorithms). EECBS* finds solutions of slightly better qual-
ity than MAPF-LNS2 for some instances, yet its runtime
is always larger. We did not use EECBS*/PPS to find ini-
tial plans for MAPF-LNS2 because, whenever PP finds so-
lutions, it always finds them faster than EECBS*/PPS, and
whenever it fails to find them, MAPF-LNS2 repairs the plan
rapidly and result in better success rates and runtimes than
EECBS*/PPS eventually. In addition, the difference in the
success rates and runtimes of EECBS and EECBS* clearly
shows the advantage of SIPPS over space-time A*, espe-
cially on large maps. The success rate of EECBS* is al-
most twice that of EECBS for a runtime limit of 5 minutes.
In terms of memory usage, the memory usage of PPS and
EECBS(*) increases fast over time (as they generate longer
and longer paths or a larger and larger search frontier), while
that of PPR and MAPF-LNS2 stays stable. Thus, PPR and
MAPF-LNS2 usually end up with a substantially smaller
memory usage after 5 minutes than PPS and EECBS(*).

Figure 5: Runtime on the warehouse map. Each dot repre-
sents the runtime on one instance, with each line and filled
area representing the mean and 0.1-quantile values over the
25 randomly generated instances for each number of agents.

Experiment 5 examines the effects of a longer runtime
limit of an hour. Figure 5 shows that MAPF-LNS2 still per-
forms the best. It plans collision-free paths for 3,000 agents
within a minute, 5,000 agents within 5 minutes, and 8,000
agents within a hour.

7 Summary
We proposed a suboptimal algorithm MAPF-LNS2 that
solves MAPF by repeatedly repairing the colliding paths in
a given set of paths. MAPF-LNS2 solves 80% of the most
challenging MAPF-benchmark instances within a runtime
limit of just 5 minutes, which significantly outperforms a
variety of state-of-the-art MAPF algorithms. In addition, the
single-agent path planner SIPPS used by MAPF-LNS2 runs
5 times (or more) faster than space-time A* and can be used
to speed up a variety of MAPF algorithms. For example, it
almost doubles the success rate of EECBS within 5 minutes
in our experiments.
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