
Anytime Multi-Agent Path Finding
via Machine Learning-Guided Large Neighborhood Search

Taoan Huang, Jiaoyang Li, Sven Koenig, Bistra Dilkina
University of Southern California

{taoanhua, jiaoyanl, skoenig, dilkina}@usc.edu

Abstract

Multi-Agent Path Finding (MAPF) is the problem of finding
a set of collision-free paths for a team of agents in a com-
mon environment. MAPF is NP-hard to solve optimally and,
in some cases, also bounded-suboptimally. It is thus time-
consuming for (bounded-sub)optimal solvers to solve large
MAPF instances. Anytime algorithms find solutions quickly
for large instances and then improve them to close-to-optimal
ones over time. In this paper, we improve the current state-of-
the-art anytime solver MAPF-LNS, that first finds an initial
solution fast and then repeatedly replans the paths of subsets
of agents via Large Neighborhood Search (LNS). It generates
the subsets of agents for replanning by randomized destroy
heuristics, but not all of them increase the solution quality
substantially. We propose to use machine learning to learn
how to select a subset of agents from a collection of subsets,
such that replanning increases the solution quality more. We
show experimentally that our solver, MAPF-ML-LNS, sig-
nificantly outperforms MAPF-LNS on the standard MAPF
benchmark set in terms of both the speed of improving the
solution and the final solution quality.

1 Introduction
Multi-Agent Path Finding (MAPF) is an NP-hard problem
(Yu and LaValle 2013; Banfi, Basilico, and Amigoni 2017)
that consists of computing a set of collision-free paths for a
team of agents on a given graph that minimizes the sum of
path costs or the makespan. Significant research effort has
been devoted to MAPF due to its applications in distribu-
tion centers (Ma et al. 2017a; Hönig et al. 2019), computer
games (Ma et al. 2017b) and traffic management (Dresner
and Stone 2008).

One category of leading MAPF solvers is (bounded-
sub)optimal solvers (that provide optimality guarantees).
Examples include Conflict-Based Search (CBS) (Sharon
et al. 2015) and its variants, such as Bounded CBS (BCBS),
Enhanced CBS (ECBS) (Barer et al. 2014) and Explicit Es-
timation CBS (EECBS) (Li, Ruml, and Koenig 2021), and
Branch-and-Cut-and-Price (BCP) solvers (Lam et al. 2019).
Another category of leading MAPF solvers is unbounded-
suboptimal solvers (that can find solutions fast for large
instances but provide no optimality guarantees). Examples

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

include Push-and-Swap (Luna and Bekris 2011), Parallel-
Push-and-Swap (PPS) (Sajid, Luna, and Bekris 2012) and
Prioritized Planning (PP) (Silver 2005). These existing
solvers often either run too slowly or provide solutions of
bad quality, especially when solving large MAPF instances
with high agent or obstacle densities. Motivated by these is-
sues, researchers have studied anytime MAPF solvers. The
appeal of an anytime MAPF solver is that it first finds an
initial solution quickly using any existing solver and, if
more runtime is available, then improves the solution qual-
ity to near-optimal over time. MAPF-LNS (Li et al. 2021b)
is a state-of-the-art anytime MAPF solver that uses Large
Neighborhood Search (LNS) (Ahuja et al. 2002). MAPF-
LNS first finds a solution quickly using an existing MAPF
solver. It then iteratively destroys the paths of a set of agents
generated by destroy heuristics and replans them using a re-
pair operator while leaving the remaining paths unchanged.
The number of agent sets that could be generated by the (ran-
domized) destroy heuristics can be exponential in the cardi-
nality of the agent sets, and MAPF-LNS randomly selects
one of them (namely the one that is first randomly gener-
ated). However, some agent sets might not improve the so-
lution as much as other agent sets and even result in no im-
provement at all, even if they are all generated by the same
destroy heuristic. Thus, we propose an agent set-selection
oracle that first samples a collection of candidate agents sets
using the randomized destroy heuristics and applies the re-
pair operator for each sampled agent set to select the best
one, which obviously results in larger improvements than
MAPF-LNS but is much more computationally expensive.

In this paper, we propose MAPF-ML-LNS, which uses
machine learning (ML) to effectively select an agent set
from a collection of candidate agent sets generated by the
destroy heuristics. During training, we first record decisions
made by the oracle on a set of MAPF instances and col-
lect features that characterize these agent sets. The agent sets
are labeled with the obtained improvement after replanning.
Then, we use supervised learning to learn a ranking func-
tion for agent sets that imitates the oracle but is faster to
compute. During testing, MAPF-ML-LNS uses the learned
ranking function to select agent sets. We test two variants of
MAPF-ML-LNS, namely ML-S, that is trained and tested on
the same grid map, and ML-O, that is trained on a set of grid
maps and tested on a different one. Both variants of MAPF-

Algorithm 1: MAPF-LNS
0: Input: A MAPF instance I
0: P = {pi : i ∈ [k]} ← runInitialSolver(I)
0: Initialize the weights ω of the destroy heuristics
0: while runtime limit not exceeded do
0: H ← selectDestroyHeuristic(w)
0: A← selectAgentSet(I,H)
0: P− ← {pi ∈ P : ai ∈ A}
0: P+ ← runReplanSolver(I, A, P \ P−)
0: Update the weights ω of the destroy heuristics
0: if

∑
p∈P+ l(p) <

∑
p∈P− l(p) then

0: P ← (P \ P−) ∪ P+

0: return P =0

ML-LNS significantly improve MAPF-LNS’s speed of im-
proving the solution and the quality of the solution found
within given a runtime limit. MAPF-ML-LNS performs well
on grid maps unseen during training, which suggests that it
is useful not only in environments with fixed layouts but also
in those with unknown or dynamic layouts.

2 MAPF
The Multi-Agent Path Finding (MAPF) problem is to find
a set of conflict-free (that is, collision-free) paths for a set
of agents N = {a1, . . . , ak} on a given 2D four-neighbor
grid map with blocked cells, that is represented as an undi-
rected unweighted graph G = (V,E). Each agent ai has
a start vertex si ∈ V and a goal vertex ti ∈ V . A path
pi = (pi,0, . . . , pi,l(pi)) for agent ai is a sequence of ver-
tices, where pi,0 = si, pi,l(pi) = ti and l(pi) is the length
of the path. Time is discretized into time steps, and, at each
time step t, every agent takes an action: It either moves to
an adjacent vertex, i.e., (pi,t, pi,t+1) ∈ E, or waits at its
current vertex, i.e., pi,t = pi,t+1 ∈ V . Two types of con-
flicts are considered: i) A vertex conflict 〈ai, aj , v, t〉 occurs
when agents ai and aj are at the same vertex v at time step
t; and ii) an edge conflict 〈ai, aj , u, v, t〉 occurs when agents
ai and aj traverse the same edge (u, v) in opposite direc-
tions from time step t to time step t+1. The cost of agent ai
is defined as l(pi), which is the number of time steps until
it reaches its goal vertex ti and remains there. The delay of
agent ai is defined as the difference between l(pi) and the
distance between its start and goal vertices. A solution is a
set of conflict-free paths that move all agents from their start
vertices to their goal vertices. The sum of costs (and delays)
of a solution is the sum of all agent costs

∑k
i=1 l(pi) (and

delays, respectively). Our goal is to find a solution with the
minimum sum of costs, or, equivalently, the minimum sum
of delays.

3 Background and Related Work
In this section, we introduce MAPF-LNS in detail and sum-
marize other related work on MAPF, ML and LNS.

3.1 MAPF-LNS
MAPF-LNS (Li et al. 2021b) is the state-of-the-art any-
time MAPF solver. Anytime solvers find a solution fast

and improve it to near-optimal if more runtime is available.
They are able to solve large MAPF instances that most ex-
isting MAPF solvers fail to either solve or provide high-
quality solutions to. However, developing anytime MAPF
solvers has not been a focus of MAPF research. To the
best of our knowledge, anytime BCBS (Cohen et al. 2018),
which changes the focal search of BCBS to an anytime focal
search, was the state-of-the-art anytime MAPF solver before
MAPF-LNS.

MAPF-LNS, shown in Algorithm 1, takes a MAPF in-
stance as input and first calls an efficient initial solver to
compute a solution P (Line 2). In each iteration, it selects
an agent set A using a destroy heuristic H (Line 6), deletes
the current paths P− of the agents in A from P (Line 7) and
calls a replan solver to replan new paths P+ for them that
conflict with neither each other nor the paths in P \P− (Line
8). If P+ improves the solution (Line 10), then MAPF-LNS
replaces P− with P+ (Line 11). The initial solver could be
any off-the-shelf MAPF solver, and the replan solver could
be any off-the-shelf MAPF solver that can handle moving
obstacles.

MAPF-LNS uses two randomized destroy heuristics,
namely an agent-based heuristic and a map-based heuristic,
to generate agent sets1. The agent-based heuristic generates
the agent set A by including the agent ai with the largest
delay and other agents (found via a random walk procedure)
whose paths prevent it from getting a lower agent cost. The
map-based heuristic randomly chooses a vertex with a de-
gree greater than 2 in graph G and generates the agent set A
by including some agents whose paths visit the chosen ver-
tex. Both the agent-based and the map-based heuristics im-
pose a limit on the cardinality of the agent set. MAPF-LNS
uses Adaptive LNS (Ropke and Pisinger 2006), essentially
an online learning algorithm, to select one of the two destroy
heuristics by maintaining a weight for each of them.

3.2 Other Related Work
Our work is one of the first papers that use ML for MAPF.
Sartoretti et al. (2019) have proposed a reinforcement-
learning framework to learn decentralized policies for agents
to avoid expensive centralized planning. Huang, Dilkina,
and Koenig (2021b) have proposed a data-driven frame-
work to learn conflict-selection strategies to speed up CBS.
Huang, Dilkina, and Koenig (2021a) have proposed imita-
tion learning and curriculum learning to learn node-selection
strategies for ECBS. ML has also been used to select the
best MAPF solvers for optimal MAPF (Kaduri, Boyarski,
and Stern 2020; Ren et al. 2021).

LNS has been studied extensively for several combinato-
rial optimization problems, such as vehicle routing (Ropke
and Pisinger 2006; Demir, Bektaş, and Laporte 2012) and
solving mixed-integer linear programs (MILPs) (Munguı́a

1A more recent version of MAPF-LNS (Li et al. 2021a) uses a
third heuristic that randomly generates agent sets, which improves
its performance on small maps, such as the 32× 32 empty map. In
our study, we focus on maps that match real-world settings, such
as warehouses, cities and games, which are typically of medium to
large sizes, and we thus do not include the random heuristic.

Figure 1: Evolution of the solution quality as a function of
the number of replans for MAPF-LNS, MAPF-ML-LNS and
MAPF-LNS with the oracle.

et al. 2018). Recently, deep-learning techniques have been
applied to learn how to repair solutions for capacitated ve-
hicle routing (Hottung and Tierney 2020) and good destroy
heuristics for LNS for solving MILPs (Addanki, Nair, and
Alizadeh 2020; Song et al. 2020; Sonnerat et al. 2021) and
other combinatorial optimization problems (Chen and Tian
2019).

4 MAPF-ML-LNS
In this section, we introduce MAPF-ML-LNS. We first pro-
pose a sampling-based oracle for agent-set selection. The
oracle samples a collection of agent sets using one of the
two destroy heuristics in MAPF-LNS, replans the paths for
all agents in the agent sets and selects the agent set that re-
duces the sum of costs most. However, the oracle is time-
consuming to compute. We therefore use data-driven meth-
ods to learn a model for agent-set selection. The key idea
is that, by recording the decisions made by the oracle, we
learn a ranking function that ranks the agent sets as simi-
larly as possible to the oracle but is much faster to compute
than the oracle. Finally, we use the learned ranking function
to guide agent-set selection during the search.

4.1 Oracle for Agent-Set Selection
Given a MAPF instance and its current solution, the ora-
cle for agent-set selection first calls the destroy heuristics to
sample a collection of S agent sets A, where S is a constant
that is set to 20 throughout the experiments. Each agent set
sample is generated by a randomized destroy heuristic cho-
sen from the agent-based and map-based heuristics with uni-
form probability, and its size is chosen uniform at random
from 5 to 16. For each of the S agent sets, the oracle replans
the paths of the agents in it and records the cost improve-
ment, i.e., the resulting improvement in the sum of costs. Fi-
nally, the oracle outputs the agent set with the highest rank,
i.e., the one with the largest cost improvement.

We replace the agent-set selection in MAPF-LNS (Lines
5-6 in Algorithm 1) with the oracle and compare the re-
sulting version of MAPF-LNS with the oracle to MAPF-
LNS for 100 agents on the random map “random-32-32-10”,
which is a 32× 32 grid map from the MAPF benchmark set
(Stern et al. 2019) with 10% randomly blocked cells. The
grid map is shown in Table 3. We follow the experimental
setup introduced in Section 5. We allocate a budget of 100

replans to each algorithm (instead of a runtime limit). Fig-
ure 1 shows how the average sum of costs changes after each
replan. The average runtime of MAPF-LNS is 0.8 seconds,
while the one of MAPF-LNS with the oracle is more than 16
seconds, which is too slow to be useful during MAPF solv-
ing. However, the significant difference between the curves
of MAPF-LNS (red) and MAPF-LNS with the oracle (blue)
in Figure 1 suggests that, if we could learn an ML model
that approximates the oracle accurately with a small com-
putational overhead during MAPF solving, then a version of
MAPF-LNS with ML-guided LNS might be able to improve
the solution quality faster early in the search than MAPF-
LNS. The curves of MAPF-ML-LNS (green) in Figures 1
and 2 show that this is indeed possible.

4.2 Model Learning

We use imitation learning to learn a strategy for agent-set se-
lection. Imitation learning relies on the demonstations of an
“expert”, which is the oracle in our case. Since we propose
a one-time offline learning algorithm, the compute budget
for training can be much higher than that of solving MAPF,
which allows us to use a slow oracle. We adapt the data ag-
gregation algorithm (Ross, Gordon, and Bagnell 2011) and
the forward training algorithm (Ross and Bagnell 2010) to
our use case.

The training algorithm, shown in Algorithm 2, takes as
input I a set of training instances and runs for T iterations.
We fix the grid map and the number of agents for the training
instances, where the start and goal vertices of the agents are
drawn i.i.d. from a given distribution. The training algorithm
first computes an initial solution PI for each I ∈ I (Lines
2-3). In each iteration t (1 ≤ t ≤ T), it collects training data
DI,t for each I ∈ I by probing the oracle and recording
the oracle’s decision with respect to the incumbent solution
PI as well as the features of the agent sets sampled by the
oracle (Lines 6-7). Then, it trains a ranking function πt that
minimizes a loss function over the aggregated training data
D (Lines 8-9). To improve PI , it evaluates DI,t to select
an agent set A using πt (Line 11), replans the paths of all
agents in A (Line 13) and updates PI if the solution im-
proves (Lines 14-15). After T iterations, it returns the rank-
ing function that performs best during validation (Lines 16-
17). Algorithm 2 repeatedly determines a ranking function
that makes good decisions in those situations encountered in
previous iterations when using the previously-learned rank-
ing functions to guide agent-set selection.

In the following two subsections, we explain in detail how
we collect the training data and learn the ranking function.

Collecting Training Data Given an instance I and the in-
cumbent solution PI , the subroutine collectData(I, PI) for
data collection called in Algorithm 2 returns DI,t, which
consists of: (1) a collection of S agent setsA sampled by the
oracle; (2) a ground-truth label vector yA ∈ {0, 1, 2}S for
learning that consists of one label for each agent set, trans-
formed from the oracle’s ranking of the agent sets; and (3) a
feature map φ : A → [0, 1]p that describes agent set A ∈ A
with a p-dimensional feature vector φ(A).

Algorithm 2: Training Algorithm
0: Input: Training instance set I, number of iterations T and

number S of agent set samples
0: for I ∈ I do
0: PI ← runInitialSolver(I)

0: D = ∅
0: for t = 1 to T do
0: for I ∈ I do
0: DI,t ← collectData(I, PI) {Sample S agent sets for instance

I and collect their features and labels using the oracle}
0: D ← D ∪ {DI,t : I ∈ I} {Aggregate data}
0: Train πt with D
0: for I ∈ I do
0: A← πt(DI,t)
0: P− ← {pi ∈ PI : ai ∈ A}
0: P+ ← runReplanSolver(I, A, PI \ P−)
0: if

∑
p∈P+ l(p) <

∑
p∈P− l(p) then

0: PI ← (PI \ P−) ∪ P+

0: π ← validate({π1, . . . , πT })
0: return π =0

Features To compute the feature vector φ(A) of a given
agent set A ∈ A, we first compute a set of 17 agent features
for each agent ai ∈ N = {a1, . . . , ak}, which are summa-
rized in Table 1. We then divide the set of agents into two
subsets, A and N \A. For each subset, we compute the min-
imum, maximum, sum and average of the value of each of
the 17 agent features over all agents in the subset, resulting
in 4×17 = 68 features for the subset and p = 2×68 = 136
features for both subsets. We normalize the value of each
feature to the range of [0, 1] across all agent sets in A and
concatenate them to obtain the feature vector φ(A).

Labels A ground-truth label yA is a value assigned to
each agent set A ∈ A, such that agent sets that result
in higher cost improvements have smaller values. We use
a simple and intuitive soft labeling scheme following pre-
vious work (Khalil et al. 2016): Let α and β (α ≥ β)
be the cost improvements of the agent sets ranked at the
75 and 50 percentiles by the oracle, respectively, and set
yA = 1[∆A≥α] + 1[∆A≥β], where ∆A is the cost improve-
ment of A (in our study, we achieved similar results when
labeling with 75, 50 and 25 percentiles as well as 80 and
50 percentiles). This labeling scheme assigns label 2 to the
agent sets ranked in the top 25%, label 1 to the ones ranked
in the top 50% but not the top 25% (i.e., the ones better than
a choice at random) and label 0 to the rest. The ground-truth
label vector yA is obtained by concatenating all labels yA.
Our labeling scheme relaxes the definition of the best agent
sets and allows us to learn a ranking function that focuses
on selecting only high-ranking agent sets w.r.t. to their cost
improvements and avoids having to correctly rank agent sets
with small or no cost improvements.

Learning a Ranking Function There is a rich literature
on learning to rank. Most of the existing models, such as
RankNet (Burges et al. 2005) and LambdaRank (Quoc and
Le 2007), rely on deep neural networks, which would intro-
duce an undesirably large computational overhead if used

Feature Descriptions Count
Static Features 6
Distance between ai’s start and goal vertices. 1
Row and column numbers of ai’s start and goal vertices. 4
Degree of ai’s goal vertex. 1
Dynamic Features 11
Delay of ai. 1
Ratio between the delay of ai and the distance between
ai’s start and goal vertices.

1

The minimum, maximum, sum and average of the heat
values of the vertices on ai’s path pi: The heat value of
vertex v ∈ V is the number of time steps that v is oc-
cupied by an agent. The heat value of a vertex counts
multiple times in the sum and average if the vertex is
visited by the agent multiple times before reaching its
goal vertex.

4

The number of time steps that ai is on a vertex with de-
gree j (1 ≤ j ≤ 4) before reaching its goal vertex.

4

Table 1: Agent ai’s features w.r.t. instance I and incumbent
solution PI = {pi : i ∈ [k]}. The counts are the numbers of
features contributed by the corresponding entries.

in our MAPF solver. We thus learn a linear ranking function
using SVMrank (Joachims 2002) instead, which was efficient
and effective in previous work on learning to rank (Khalil
et al. 2016; Huang, Dilkina, and Koenig 2021b,a) in the con-
text of search algorithms for different kinds of applications.

Given the dataset D collected during training, SVMrank

learns a linear ranking function π : Rp → R : π(φ(A)) =
wTφ(A) with parameter w ∈ Rp, that minimizes the loss
function L(w) =

∑
A∈D l(yA, ŷA) + C

2 ||w||
2
2, where yA is

the ground-truth label vector, ŷA is the predicted score vec-
tor resulting from applying π to each feature vector φ(A) for
A ∈ A, l : Rp × Rp → R is the loss resulting from ranking
the agent sets in A according to ŷA instead of the ground-
truth labels yA and C > 0 is a regularization parameter.
Specifically, l(yA, ŷA) calculates the fraction of swapped
pairs

l(yA, ŷA) =
|{(Ai, Aj) ∈ PA : ŷAi

≤ ŷAj
}|

|PA|
based on the set of ordered pairs of agent sets PA =
{(Ai, Aj) : Ai, Aj ∈ A ∧ yAi

> yAj
}. We use an open-

source solver (Joachims 2006) to learn the ranking function
that minimizes an upper bound on the loss, since the loss
itself is NP-hard to minimize.

4.3 ML-Guided LNS
After learning the ranking function π, we test it in MAPF-

ML-LNS. In each iteration during testing, MAPF-ML-LNS
samples a collection A of S agent sets using the two de-
stroy heuristics and computes the predicted score π(φ(A))
for each agent set A ∈ A. The destroy heuristics are chosen
from the agent-based and map-based heuristics with proba-
bilities according to the weights ω maintained by adaptive
LNS. MAPF-ML-LNS replans the paths for the agents in
agent sets in descending order of the predicted scores of the
agent sets. If a new incumbent solution (a solution with a

Algorithm 3: MAPF-ML-LNS
0: Input: MAPF instance I , ranking function π and number of

agent set samples S
0: P = {pi : i ∈ [k]} ← runInitialSolver(I)
0: Initialize the weights ω of the destroy heuristics
0: while runtime limit not exceeded do
0: A ← ∅
0: for i = 1 to S do
0: H ← selectDestroyHeuristic(w)
0: A ← A∪ selectAgentSet(I,H)
0: Compute φ(A) for all A ∈ A
0: Compute π(φ(A)) for all A ∈ A
0: for A ∈ A in descending order of π(φ(A)) do
0: P− ← {pi : ai ∈ A}
0: P+ ← runReplanSolver(I, A, P \ P−)
0: Update the weights ω of the destroy heuristics
0: if

∑
p∈P+ l(p) <

∑
p∈P− l(p) then

0: P ← (P \ P−) ∪ P+

0: break
0: return P =0

Training k Average
Ranking

Improving
Choice Regret

random 100 6.5/20 90% 25%
den520d 200 7.0/20 96% 33%

city 250 6.7/20 99% 19%
ost003d 100 5.4/20 91% 26%

warehouse 100 6.0/20 90% 28%

Table 2: Validation results for the learned ranking function
π. “Training k” is the number of agents of the training in-
stances. “Average ranking” is the average rank of the first
agent set selected by π among the S = 20 agent sets. “Im-
proving choice” is the fraction of times π selects an agent
set that results in a positive cost improvement. “Regret” is
calculated as the average of 100% minus the cost improve-
ment achieved by π as a percentage of the cost improvement
achieved by the oracle.

smaller sum of costs) is found, it discards the remaining
agent sets, recomputes the agent features and continues to
the next iteration. MAPF-ML-LNS is summarized in Algo-
rithm 3.

4.4 Discussion
To improve MAPF-LNS, we frame our ML problem as
learning an agent set-selection strategy to guide destroy-
ing part of the solution in LNS. This allows us to use a
lightweight linear ML model, such as SVMrank, that is easy
to train and fast to evaluate during MAPF solving. We do not
learn how to construct agent sets or predict the cost improve-
ment of given agent sets since these are much more compli-
cated ML problems that require using larger ML models,
such as deep neural networks. We experimented with graph
convolutional networks for these tasks on an agent depen-
dency graph (Li et al. 2019) and ended up with good ML
performance but an undesirably large computational over-
head due to their high model complexity, rendering them
useless.

5 Empirical Evaluation
In this section, we demonstrate the efficiency and effective-
ness of MAPF-ML-LNS through extensive experiments. We
implement MAPF-ML-LNS in C++ and conduct our exper-
iments on a 2.4 GHz Intel Core i7 CPU with 16 GB RAM.
We compare against MAPF-LNS on five grid maps of dif-
ferent sizes and structures from the MAPF benchmark set
(Stern et al. 2019): (1) the random map “random-32-32-10”;
(2) the game map “den520d”, which is a 257 × 256 grid
map from the video game Dragon Age: Origins; (3) the city
map “Paris 1 256”, which is a 256× 256 grid map of Paris;
(4) the game map “ost003d”, which is a 194× 194 grid map
from the video game Dragon Age: Origins; and (5) the ware-
house map “warehouse-10-20-10-2-1”, which is a 163× 63
grid map with 200 10×2 rectangular obstacles. The five grid
maps are shown in Table 3. We do not compare to other any-
time solvers, such as anytime BCBS and anytime EECBS,
since they have been shown to be inferior to MAPF-LNS
(Li et al. 2021b).

MAPF-LNS and MAPF-ML-LNS use the same setup. For
the initial solvers and each grid map, we follow Li et al.
(2021a) and select the MAPF solver from PP, PPS and
EECBS that has the highest success rate on the instances
with the largest number of agents within a runtime limit of
10 seconds as reported by them. We use that MAPF solver
consistently for training and MAPF solving. That is, we use
PP as the initial solver for den520d, ost003d and the city
map, and PPS for the random and warehouse maps. We use
PP as the replan solver for all grid maps, since PP domi-
nates the other MAPF solvers used by them, namely CBS
and EECBS (Li et al. 2021b).

During training, we run Algorithm 2 for T = 100 itera-
tions. For each grid map, we use |I| = 16 instances with a
fixed number of agents from 16 “random” scenarios in the
MAPF benchmark set to collect training data. The number
of agents k of the training instances is reported in Table 2.
Since we are using a randomized version of PP that uses
random agent priorities to plan agents’ paths, the cost im-
provement of each agent set used for creating its label is the
average taken over 6 runs. We use regularization parameter
C = 0.1 and the default values for the other parameters in
the SVMrank solver. We also tried C ∈ {0.01, 0.001} and
achieved similar results. It takes 2 to 8 hours, depending on
the grid map, to run Algorithm 2 on a single CPU. If collect-
ing training data for the 16 instances weres done in parallel
on 16 CPUs in each iteration (Lines 6-7 in Algorithm 2), the
training time could be reduced to less than 1 hour.

During validation, we evaluate π1, . . . , πT on the valida-
tion data and return the ranking function π that selects agent
sets with the highest average ranking. We run MAPF-LNS
with the oracle for 100 iterations on 4 MAPF instances from
another 4 “random” scenarios to collect the validation data.
The validation results for π are summarized in Table 2. Dur-
ing testing, we generate another 25 MAPF instances for each
grid map from the same distribution as the “random” scenar-
ios and set a runtime limit of 60 seconds per instance. For
both MAPF-LNS and MAPF-ML-LNS, the runtime limit
for finding the initial solution is set to 10 seconds. Those
instances for which they fail to find an initial solution within

k
AUC Ratio Win/Loss Sum of Agents’ Delay (Suboptimality)

ML-S ML-O ML-S ML-O MAPF-LNS ML-S ML-O

random
100 1.15±0.23 1.12±0.20 20/5 20/5 30 (1.01) 28 (1.01) 28 (1.01)
150 1.14±0.12 1.07±0.12 22/3 21/4 105 (1.03) 96 (1.03) 96 (1.03)
200 1.03±0.10 1.07±0.19 15/9 15/9 309 (1.07) 275 (1.06) 270 (1.06)
250 0.98±0.17 0.95±0.12 10/15 8/17 806 (1.15) 843 (1.15) 845 (1.15)
300 1.13±0.14 1.06±0.15 18/6 13/11 4,460 (1.67) 3,754 (1.56) 4,301 (1.61)
350 0.99±0.08 0.94±0.08 11/12 6/17 21,310 (3.78) 22,234 (3.90) 23,674 (4.08)

den520d
200 1.97±0.56 1.75±0.53 23/2 24/1 64 (1.00) 65 (1.00) 66 (1.00)
300 1.62±0.55 1.45±0.43 21/4 20/5 400 (1.01) 298 (1.00) 328 (1.01)
400 1.65±0.54 1.31±0.30 25/0 22/3 1,327 (1.02) 778 (1.01) 1,121 (1.01)
500 1.25±0.35 1.13±0.22 19/6 18/7 3,616 (1.04) 2,676 (1.03) 3,281 (1.03)
600 1.10±0.15 1.10±0.08 18/7 24/1 8,134 (1.08) 6,654 (1.06) 6,967 (1.07)
700 1.07±0.06 1.05±0.06 22/3 20/5 12,558 (1.10) 11,785 (1.10) 11,535 (1.09)

city
250 1.75±0.41 1.14±0.32 22/3 14/11 229 (1.00) 110 (1.00) 128 (1.00)
350 1.12±0.34 1.02±0.24 19/6 14/11 469 (1.01) 372 (1.01) 368 (1.01)
450 1.30±0.35 1.01±0.22 19/6 13/12 763 (1.01) 629 (1.01) 753 (1.01)
550 1.05±0.18 1.06±0.24 16/9 14/11 1,932 (1.02) 2,056 (1.02) 1,536 (1.01)
650 1.08±0.13 1.10±0.25 17/8 17/8 3,274 (1.03) 3,041 (1.02) 3,033 (1.02)
750 1.07±0.14 1.09±0.08 17/6 19/4 8,371 (1.06) 8,363 (1.06) 7,413 (1.05)

ost003d
100 1.28±0.33 1.17±0.28 21/4 15/10 42 (1.00) 42 (1.00) 42 (1.00)
200 1.43±0.36 1.20±0.27 19/4 17/6 458 (1.01) 332 (1.01) 372 (1.01)
300 1.14±0.19 1.16±0.16 16/8 20/4 2,509 (1.05) 2,379 (1.05) 2,152 (1.04)
400 1.05±0.08 1.06±0.08 17/6 17/6 6,907 (1.11) 6,584 (1.10) 6,417 (1.10)
500 1.02±0.03 1.04±0.05 15/7 16/6 14,750 (1.19) 14,431 (1.19) 14,251 (1.18)
600 1.02±0.03 1.03±0.04 14/6 16/4 24,684 (1.27) 24,468 (1.27) 24,401 (1.27)

warehouse

100 1.35±0.33 1.25±0.30 20/5 20/5 57 (1.01) 37 (1.00) 37 (1.00)
150 1.21±0.24 1.14±0.22 18/7 16/9 295 (1.02) 195 (1.01) 217 (1.02)
200 1.19±0.22 1.05±0.13 21/4 15/10 925 (1.06) 736 (1.05) 842 (1.05)
250 1.17±0.20 1.11±0.18 17/8 16/9 1,817 (1.09) 1,595 (1.08) 1,805 (1.09)
300 1.18±0.21 1.13±0.19 17/8 18/7 4,719 (1.20) 3,852 (1.16) 3,547 (1.15)
350 1.07±0.10 1.02±0.07 15/9 13/11 12,004 (1.43) 10,191 (1.36) 12,143 (1.43)

Table 3: The average ratios of the AUCs of MAPF-LNS and our MAPF solvers with their standard deviations, the win/loss
counts w.r.t. the AUCs and the average sums of delays with the average suboptimalities for a runtime limit of 60 seconds. All
entries take only the solved MAPF instances into account. The win/loss counts are the numbers of instances where the AUCs of
our MAPF solvers are smaller/larger than those of MAPF-LNS. The suboptimalities are overestimated values calculated as the
ratio between the final sum of costs and the sum of distances between the agents’ start and goal vertices. We bold the number
of agents k on which ML-S is trained and the entries where one of our MAPF solvers outperforms MAPF-LNS.

10 seconds are considered unsolvable and not included in
our results. We use the same random seed to ensure that
both MAPF solvers compute the same instances and initial
solutions. The runtime limit of PP per replan is set to 2 sec-
onds for the warehouse map and 0.6 seconds for the other
grid maps initially and then adaptively set to twice the aver-
age runtime of all successful replans so far after the first 30
successful replans. During both training and MAPF solving,
when generating an agent set using the destroy heuristics in
a MAPF solver, we draw its cardinality uniformly from 5
to 16. We sample S = 20 agent sets in each iteration of
MAPF-ML-LNS.

Our results provide answers to the following questions:
(1) If the grid map is known in advance, can we learn a rank-
ing function that performs well on the same grid map with
the same and different numbers of agents? (2) If the grid map
is unknown in advance, can we learn a ranking function from
other grid maps that performs well on the unknown one? We
therefore learn two ranking functions with SVMrank for each
grid map, namely a ranking function trained on MAPF in-
stances on that grid map (resulting in MAPF solver ML-S)

and a ranking function trained on MAPF instances from the
other four grid maps (resulting in MAPF solver ML-O).

An important metric for evaluating the performance of
an anytime MAPF solver is its speed of improving the so-
lution. Let Itest be the set of test instances and, for each
I ∈ Itest, let tSI,init, SOC

S
I (t) and SODSI (t) be the run-

time needed to find the initial solution, the sum of costs
and the sum of delays of the solution at runtime t, respec-
tively, when solving instance I using solver S. Following
Li et al. (2021b), we compute the area under the curve
(AUC) of the sum of delays as a function of the runtime
for each instance I with solver S, which is formally defined
asAUCSI (tlimit) =

∫ tlimit

tS
I,init

SODSI (t)dt, where tlimit is the run-
time limit (60 seconds). The smaller the AUC, the faster the
speed of improving the solution is. In Table 3, we report the
average ratios of the AUCs of MAPF-LNS and our MAPF
solvers, the win/loss counts w.r.t. the AUC and the average
sums of delays with the the average suboptimalities over

Figure 2: Evolutions of the sum of costs (solid curves with the y-axis on the left side, smaller is better) from 1 second to 60
seconds for MAPF-LNS, ML-S and ML-O, averaged over all solved instances, and the average ratio of the AUCs of MAPF-
LNS and our MAPF solvers (dotted curves with the y-axis on the right side, greater than 1 is better), also averaged over all
solved instances, as a function of the runtime limit. The error bars represent the standard deviation.

all solved test instances2. On the city and two game maps
(den520d and ost003d), the AUCs of MAPF-LNS are 43%
to 97% worse than the ones of ML-S. On these three maps,
ML-S significantly outperforms MAPF-LNS also w.r.t. the
win/loss counts and, for almost all tested numbers of agents,
w.r.t. the final solution qualities. On the random and ware-
house maps, ML-S also outperforms MAPF-LNS w.r.t. all
metrics, except for a few cases with huge numbers of agents
(250 and 350 agents on the random map). Even though ML-
S learns the ranking functions on MAPF instances with a
fixed number of agents, they generalize well to MAPF in-
stances with larger numbers of agents on the same grid map
and outperform MAPF-LNS in almost all cases. ML-O also
significantly outperforms MAPF-LNS. ML-O, without see-
ing the test grid map during training, is competitive with
ML-S and even outperforms it sometimes on the two game
maps and the city map. For the random map, the improve-
ment of MAPF-ML-LNS over MAPF-LNS is not as sub-
stantial as for the other grid maps, especially on MAPF in-
stances with huge numbers of agents. We tried retraining the
ranking functions on MAPF instances with larger numbers
of agents (e.g., 250 agents for the random map) but achieved
similar results. It is future work to improve the effectiveness
of MAPF-ML-LNS on this grid map.

To demonstrate the effectiveness of our MAPF
solvers further, we show the average sum of costs
for MAPF-LNS, ML-S and ML-O in Figure 2 to-
gether with the average ratios between the AUCs of
MAPF-LNS and our MAPF solvers as functions of the
runtime limit tlimit, i.e., 1

|Itest|
∑
I∈Itest

SOCSI (tlimit) and

2All solvers have the same set of solved instances since they use
the same initial solver with the same random seeds.

1
|Itest|

∑
I∈Itest

AUCMAPF-LNS
I (tlimit)

AUCSI (tlimit)
for each solver S. In these

cases, ML-S and ML-O establish advantages early in the
search and substantially outperform MAPF-LNS for several
shorter runtime limits, e.g., 20 or 30 seconds.

The runtime overhead of MAPF-ML-LNS induced by
computing the features and evaluating the ranking func-
tion is small. MAPF-ML-LNS performs fewer replans than
MAPF-LNS on average. These results suggest that our
learned ranking functions select agent sets more effectively
since they improve the solutions faster and achieve better
solution qualities than MAPF-LNS with fewer replans.

Finally, we study the feature importance of the learned
ranking function for ML-S for each grid map, measured by
the absolute values of the learned feature weights. It makes
sense to do so since the features φ(A) are normalized. Fea-
tures related to the delays are the most important ones for
all five grid maps. The other important features are related
to the costs of the paths, the ratios between the delays and
costs, the sums of the heat values on the paths and the num-
bers of time steps that the agents are on a vertex with degree
2 or 3 (see Table 1 for definitions).

6 Conclusion
In this paper, we proposed MAPF-ML-LNS, an anytime
MAPF solver that uses ML-guided LNS. We compared
MAPF-ML-LNS to MAPF-LNS, the state-of-the-art any-
time MAPF solver. Our experimental results showed that
our learned ranking function can generalize to different
numbers of agents on both fixed and unseen grid maps. In
fact, MAPF-ML-LNS performed substantially better than
MAPF-LNS on the large grid maps tested, such as the two
game maps, the warehouse map and the city map.

Acknowledgments
The research at the University of Southern California was
supported by the National Science Foundation (NSF) un-
der grant numbers 1409987, 1724392, 1817189, 1837779,
1935712 and 2112533, the U.S. Department of Homeland
Security under grant number 2015-ST-061-CIRC01 as well
as a gift from Amazon. The views and conclusions contained
in this document are those of the authors and should not be
interpreted as necessarily representing the official policies,
either expressed or implied, of NSF or the U.S Department
of Homeland Security.

References
Addanki, R.; Nair, V.; and Alizadeh, M. 2020. Neural large
neighborhood search. In LMCA NeurIPS Workshop.
Ahuja, R. K.; Ergun, Ö.; Orlin, J. B.; and Punnen, A. P.
2002. A survey of very large-scale neighborhood search
techniques. Discrete Applied Mathematics, 123(1-3): 75–
102.
Banfi, J.; Basilico, N.; and Amigoni, F. 2017. Intractability
of time-optimal multirobot path planning on 2D grid graphs
with holes. IEEE Robotics and Automation Letters, 2(4):
1941–1947.
Barer, M.; Sharon, G.; Stern, R.; and Felner, A. 2014. Sub-
optimal variants of the conflict-based search algorithm for
the multi-agent pathfinding problem. In SoCS.
Burges, C.; Shaked, T.; Renshaw, E.; Lazier, A.; Deeds, M.;
Hamilton, N.; and Hullender, G. 2005. Learning to rank
using gradient descent. In ICML, 89–96.
Chen, X.; and Tian, Y. 2019. Learning to perform local
rewriting for combinatorial optimization. In NeurIPS, 6281–
6292.
Cohen, L.; Greco, M.; Ma, H.; Hernández, C.; Felner, A.;
Kumar, T. S.; and Koenig, S. 2018. Anytime focal search
with applications. In IJCAI, 1434–1441.
Demir, E.; Bektaş, T.; and Laporte, G. 2012. An adap-
tive large neighborhood search heuristic for the pollution-
routing problem. European Journal of Operational Re-
search, 223(2): 346–359.
Dresner, K.; and Stone, P. 2008. A multiagent approach to
autonomous intersection management. Journal of Artificial
Intelligence Research, 31: 591–656.
Hönig, W.; Kiesel, S.; Tinka, A.; Durham, J. W.; and Aya-
nian, N. 2019. Persistent and robust execution of MAPF
schedules in warehouses. IEEE Robotics and Automation
Letters, 4(2): 1125–1131.
Hottung, A.; and Tierney, K. 2020. Neural large neighbor-
hood search for the capacitated vehicle routing problem. In
ECAI, 443–450.
Huang, T.; Dilkina, B.; and Koenig, S. 2021a. Learning
node-selection strategies in bounded-suboptimal conflict-
based search for multi-agent path finding. In AAMAS, 611–
619.
Huang, T.; Dilkina, B.; and Koenig, S. 2021b. Learning to
resolve conflicts for multi-agent path finding with conflict-
based search. In AAAI, 11246–11253.

Joachims, T. 2002. Optimizing search engines using click-
through data. In SIGKDD, 133–142.
Joachims, T. 2006. Training linear SVMs in linear time. In
SIGKDD, 217–226.
Kaduri, O.; Boyarski, E.; and Stern, R. 2020. Algorithm se-
lection for optimal multi-agent pathfinding. In ICAPS, 161–
165.
Khalil, E. B.; Le Bodic, P.; Song, L.; Nemhauser, G. L.; and
Dilkina, B. 2016. Learning to branch in mixed integer pro-
gramming. In AAAI, 724–731.
Lam, E.; Le Bodic, P.; Harabor, D.; and Stuckey, P. J. 2019.
Branch-and-cut-and-price for multi-agent pathfinding. In IJ-
CAI, 1289–1296.
Li, J.; Boyarski, E.; Felner, A.; Ma, H.; and Koenig, S.
2019. Improved heuristics for multi-agent path finding with
conflict-based search: Preliminary results. In SoCS.
Li, J.; Chen, Z.; Harabor, D.; Stuckey, P. J.; and Koenig, S.
2021a. Anytime multi-agent path finding via large neighbor-
hood search. In IJCAI, 4127–4135.
Li, J.; Chen, Z.; Harabor, D.; Stuckey, P. J.; and Koenig, S.
2021b. Anytime multi-agent path finding via large neigh-
borhood search: Extended abstract. In AAMAS, 1581–1583.
Li, J.; Ruml, W.; and Koenig, S. 2021. EECBS: Bounded-
suboptimal search for multi-agent path finding. In AAAI,
12353–12362.
Luna, R.; and Bekris, K. E. 2011. Push and swap: Fast coop-
erative path-finding with completeness guarantees. In IJCAI,
294–300.
Ma, H.; Li, J.; Kumar, T. S.; and Koenig, S. 2017a. Life-
long multi-agent path finding for online pickup and delivery
tasks. In AAMAS, 837–845.
Ma, H.; Yang, J.; Cohen, L.; Kumar, T. S.; and Koenig, S.
2017b. Feasibility study: Moving non-homogeneous teams
in congested video game environments. In AIIDE, 270–272.
Munguı́a, L.-M.; Ahmed, S.; Bader, D. A.; Nemhauser,
G. L.; and Shao, Y. 2018. Alternating criteria search: A par-
allel large neighborhood search algorithm for mixed integer
programs. Computational Optimization and Applications,
69(1): 1–24.
Quoc, C.; and Le, V. 2007. Learning to rank with nonsmooth
cost functions. In NeurIPS, 193–200.
Ren, J.; Sathiyanarayanan, V.; Ewing, E.; Senbaslar, B.; and
Ayanian, N. 2021. MAPFAST: A deep algorithm selector
for multi agent path finding using shortest path embeddings.
In AAMAS, 1055–1063.
Ropke, S.; and Pisinger, D. 2006. An adaptive large neigh-
borhood search heuristic for the pickup and delivery prob-
lem with time windows. Transportation Science, 40(4):
455–472.
Ross, S.; and Bagnell, D. 2010. Efficient reductions for im-
itation learning. In AISTATS, 661–668.
Ross, S.; Gordon, G.; and Bagnell, D. 2011. A reduction
of imitation learning and structured prediction to no-regret
online learning. In AISTATS, 627–635.

Sajid, Q.; Luna, R.; and Bekris, K. E. 2012. Multi-agent
pathfinding with simultaneous execution of single-agent
primitives. In SoCS.
Sartoretti, G.; Kerr, J.; Shi, Y.; Wagner, G.; Kumar, T. S.;
Koenig, S.; and Choset, H. 2019. PRIMAL: Pathfinding
via reinforcement and imitation multi-agent learning. IEEE
Robotics and Automation Letters, 2378–2385.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding.
Artificial Intelligence, 219: 40–66.
Silver, D. 2005. Cooperative pathfinding. In AIIDE, 117–
122.
Song, J.; Lanka, R.; Yue, Y.; and Dilkina, B. 2020. A gen-
eral large neighborhood search framework for solving inte-
ger linear programs. In NeurIPS, 20012–20023.
Sonnerat, N.; Wang, P.; Ktena, I.; Bartunov, S.; and Nair, V.
2021. Learning a large neighborhood search algorithm for
mixed integer programs. arXiv preprint arXiv:2107.10201.
Stern, R.; Sturtevant, N. R.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T. T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T. S.;
Boyarski, E.; and Bartak, R. 2019. Multi-agent pathfinding:
Definitions, variants, and benchmarks. In SoCS.
Yu, J.; and LaValle, S. M. 2013. Planning optimal paths for
multiple robots on graphs. In ICRA, 3612–3617.

