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ABSTRACT
With the rising demand for deploying robot teams in autonomous

warehouses and factories, the Multi-Agent Path Finding (MAPF)

problem has drawn more and more attention. The classical MAPF

problem and most of its variants focus on navigating agent teams

to goal locations while avoiding collisions. However, they do not

take into account any precedence constraints that agents should

respect when reaching their goal locations. Planning with prece-

dence constraints is important for real-world multi-agent systems.

For example, a mobile robot can only pick up a package at a sta-

tion after it has been delivered by another robot. In this paper, we

study the Multi-Agent Path Finding with Precedence Constraints

(MAPF-PC) problem, in which agents need to visit sequences of

goal locations while satisfying precedence constraints between the

goal locations. We propose two algorithms for solving this problem

systematically: Conflict-Based Search with Precedence Constraints

(CBS-PC) is complete and optimal, and Priority-Based Search with

Precedence Constraints (PBS-PC) is incomplete but more efficient

in finding near-optimal solutions in practice. Our experimental

results show that CBS-PC scales to dozens of agents and hundreds

of goal locations and precedence constraints, and PBS-PC scales

to hundreds of agents, around one thousand goal locations, and

hundreds of precedence constraints.
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1 INTRODUCTION
In intelligent warehouse and factory systems, large teams of robots

are expected to complete constantly dispatched tasks effectively.

One typical example is the Kiva (now: Amazon Robotics) warehouse
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system, in which hundreds of Kiva robots are coordinated to trans-

port movable shelving units on the fly without human intervention

[17]. The Multi-Agent Path Finding (MAPF) problem is the problem

of navigating a team of agents from their start locations to their goal

locations while avoiding collisions. Due to the rising demand for

developing such multi-robot systems, MAPF has drawn more and

more attention, and MAPF algorithms are regarded as fundamental

techniques for coordinating the motions of robot teams.

Although classical MAPF algorithms can find effective plans for

navigating mobile robots in autonomous warehouses, they only

plan for agents to reach single goal locations. In real-world systems,

we often need to coordinate robots that fulfill streams of tasks

with precedence constraints over relatively long time horizons. For

example, a mobile robot needs to move to several stations to deliver

different packages, and another mobile robot can only pick up a

package after it has been delivered to the corresponding station.

However, existing MAPF algorithms do not consider precedence

constraints between goals when planning the path to reach a se-

quence of goal locations for each agent [5]. This motivates us to

study the Multi-Agent Path Finding with Precedence Constraints

(MAPF-PC) problem, in which agents need to complete sequences

of goals (by reaching the goal locations) while satisfying precedence

constraints between the goals. We present two algorithms for solv-

ing MAPF-PC: Conflict-Based Search with Precedence Constraints

(CBS-PC) and Priority-Based Search with Precedence Constraints

(PBS-PC), which generalize the state-of-the-art MAPF algorithms

CBS [14] and PBS [10], respectively. We also propose several im-

provements to CBS-PC. Like CBS and PBS, CBS-PC is complete and

optimal, and PBS-PC is incomplete but more efficient in obtaining

near-optimal plans in practice.

We benchmarked CBS-PC and PBS-PC on MAPF-PC instances

with different numbers of agents, goals, and precedence constraints.

The results show that the most advanced CBS-PC variant scales to

dozens of agents and hundreds of goal locations and precedence

constraints, and PBS-PC scales to hundreds of agents, around one

thousand goal locations, and hundreds of precedence constraints.

2 PRELIMINARIES
In this section, we introduce MAPF, CBS, prioritized planning, and

PBS to provide the necessary background for theMAPF-PC problem

and our MAPF-PC algorithms.



2.1 MAPF
The MAPF problem is defined by an undirected graph 𝐺 = (𝑉 , 𝐸)
and a set of𝑚 agents {𝑎1 . . . 𝑎𝑚}. Each agent 𝑎𝑖 has a start vertex

𝑠𝑖 ∈ 𝑉 and a goal vertex 𝑔𝑖 ∈ 𝑉 . In each timestep, an agent either

moves to a neighboring vertex, waits at its current vertex, or ter-

minates at its goal vertex (that is, does not move anymore). Both

move and wait actions have unit cost, and terminate actions have

zero cost. A path of an agent is a sequence of actions that leads it

from its start vertex to its goal vertex and ends with a terminate

action. The path cost of a path is the accumulated cost of all actions

in this path. A vertex conflict happens when two agents stay at the

same vertex simultaneously, and an edge conflict happens when
two agents traverse the same edge in opposite directions simulta-

neously. A solution is a set of conflict-free paths of all agents. A

solution is an optimal solution iff there is no other solution with

a smaller objective value. Two common objectives for MAPF are

the Sum of path Costs (SoC) and the makespan. The SoC is the sum

of the path costs of the paths of all agents, and the makespan is

the maximum path cost of the paths of all agents. Solving MAPF

optimally is NP-hard for either objective [12, 18].

2.2 CBS
CBS [14] is a complete and optimal two-level MAPF algorithm. On

the high level, CBS performs a best-first search on a Constraint
Tree (CT). Each CT node contains (1) a set of constraints

1
and (2) a

set of paths, one for each agent, that satisfy all these constraints.

The cost of a CT node is the SoC or makespan of all its paths,

depending on the objective of the MAPF problem. CBS starts with

the root CT node, which has an empty set of constraints and a

path for each agent that has the minimum path cost when ignoring

conflicts. When expanding a CT node, CBS returns the paths of it

as a solution if the paths are conflict-free. Otherwise, CBS picks a

conflict to resolve, splits the CT node into two child CT nodes, and

adds a constraint to each child CT node to prohibit either one or the

other of the two conflicting agents from using the conflicting vertex

or edge at the conflicting timestep. CBS then calls its low level to

replan the path of the newly constrained agent in each child CT

node. On the low level, for a given CT node and a given agent, CBS

finds a path for the agent that has the minimum path cost while

satisfying all constraints of the CT node but ignoring conflicts.

2.3 Prioritized Planning and PBS
Prioritized planning is a simple-yet-effective MAPF algorithm that

plans the agents according to a predefined total priority ordering.

A priority ordering ≺≺≺ is a strict partial order on {𝑎1 . . . 𝑎𝑚} where
𝑎𝑖 ≺ 𝑎 𝑗 indicates that agent 𝑎𝑖 is of higher priority than agent 𝑎 𝑗 .

A total priority ordering ≺≺≺ satisfies that, for any two agents 𝑎𝑖 and

𝑎 𝑗 , we have either 𝑎𝑖 ≺ 𝑎 𝑗 or 𝑎 𝑗 ≺ 𝑎𝑖 . Prioritized planning plans

for agents in the order from highest priority to lowest priority. For

each agent, it finds a path that has the minimum path cost among

all paths that avoid conflicts with the paths of all higher-priority

agents. Whether prioritized planning finds a solution often depends

1
The constraints in a CT are added by CBS to solve the MAPF instance. They are

different from precedence constraints, which characterize a MAPF-PC instance and

are thus part of the input.

on the predefined priority ordering, and it is not always easy to

find a priority ordering that works.

PBS [10] is a two-level MAPF algorithm which systematically

searches for such a priority ordering. On the high level, it performs

a depth-first search on a Priority Tree (PT). Each PT node𝑁 contains

(1) a priority ordering ≺≺≺𝑁 and (2) a set of paths, one for each agent,

that respects its priority ordering, i.e., the paths of any two agents

𝑎𝑖 and 𝑎 𝑗 with 𝑎𝑖 ≺𝑁 𝑎 𝑗 are conflict-free. PBS starts with the root

PT node, which has an empty priority ordering (that is, no agent

is of higher priority than another) and thus a path for each agent

that has the minimum path cost when ignoring conflicts. When

expanding a PT node, PBS picks a pair of conflicting agents 𝑎𝑖 and

𝑎 𝑗 and splits the PT node into two child PT nodes, each extending

the priority ordering of its parent PT node with either 𝑎𝑖 ≺ 𝑎 𝑗 or

𝑎 𝑗 ≺ 𝑎𝑖 . PBS then calls its low level to replan the paths of the child

nodes so that their paths respect their priority orderings. On the

low level, for each PT node, PBS uses topological sorting according

to the priority ordering to order the agents and plans paths for them

in that order. Like prioritized planning, PBS plans a path for each

agent that has the minimum path cost among all paths that avoid

conflicts with the paths of higher-priority agents. A PT node is

pruned if PBS cannot find such a path for at least one agent. When

generating a PT node, PBS returns the paths of it as a solution if

the paths are conflict-free. PBS is neither optimal nor complete, but

existing work shows that it often finds solutions that are close to

optimal and scales well to large numbers of agents [9, 10].

3 PROBLEM DEFINITION
The MAPF-PC problem is defined by an undirected graph 𝐺 =

(𝑉 , 𝐸), a set of𝑚 agents {𝑎1 . . . 𝑎𝑚}, and a set of precedence con-

straints T . Each agent 𝑎𝑖 has a start vertex 𝑠𝑖 ∈ 𝑉 and a sequence

of 𝑙𝑖 goals [𝑔1𝑖 , 𝑔
2

𝑖
. . . 𝑔

𝑙𝑖
𝑖
]. Each goal 𝑔

𝑗
𝑖
corresponds to a goal vertex

𝑔
𝑗
𝑖
.𝑙𝑜𝑐 ∈ 𝑉 . When agent 𝑎𝑖 is at 𝑔

𝑗
𝑖
.𝑙𝑜𝑐 , it can (but is not required to)

complete goal 𝑔 𝑗
𝑖
. Complete actions take zero timesteps and have

zero cost. We use 𝜏 (𝑔 𝑗
𝑖
) to denote the completion timestep of 𝑔

𝑗
𝑖
.

Each precedence constraint ⟨𝑔 𝑗
𝑖
, 𝑔

𝑗 ′

𝑖′ ⟩ ∈ T is a tuple of two goals

𝑔
𝑗
𝑖
and 𝑔

𝑗 ′

𝑖′ and means that 𝑔
𝑗
𝑖
must be completed before 𝑔

𝑗 ′

𝑖′ . An

agent must complete its goals in the order of the goal sequence

and terminates when it completes its last goal. The completion

timesteps of all goals must satisfy the precedence constraints as

well. Besides vertex and edge conflicts, we consider a new type of

conflict called precedence conflict. A precedence conflict happens

when there exists a pair of goals 𝑔
𝑗
𝑖
and 𝑔

𝑗 ′

𝑖′ such that 𝜏 (𝑔 𝑗
𝑖
) ≥ 𝜏 (𝑔 𝑗

′

𝑖′ )
and ⟨𝑔 𝑗

𝑖
, 𝑔

𝑗 ′

𝑖′ ⟩ ∈ T . In MAPF-PC, a path for an agent also needs to

specify the completion timestep of each goal of the agent. A path
segment for goal 𝑔 𝑗

𝑖
is a sequence of actions from the completion of

𝑔
𝑗−1
𝑖

(or timestep 0 if 𝑗 = 1) to the completion of 𝑔
𝑗
𝑖
. A solution to a

MAPF-PC instance is a set of conflict-free paths for all agents.

The MAPF problem is a sub-class of the MAPF-PC problem

where each agent has only one goal and T = ∅. Therefore, solving
MAPF-PC optimally is also NP-hard.



4 CBS WITH PRECEDENCE CONSTRAINTS
We introduce CBS-PC, a complete and optimal algorithm that solves

the MAPF-PC problem. In this paper, we are interested in minimiz-

ing the SoC. However, CBS-PC can be adapted to other objectives,

such as minimizing the makespan or the sum of goal completion

timesteps, by making small modifications to its low level.

4.1 High Level of CBS-PC
On the high level, CBS-PC resolves vertex and edge conflicts in the

same way as CBS. Consider the case when CBS-PC picks a prece-

dence conflict between goals 𝑔
𝑗
𝑖
an 𝑔

𝑗 ′

𝑖′ that violates the precedence

constraint ⟨𝑔 𝑗
𝑖
, 𝑔

𝑗 ′

𝑖′ ⟩ (in other words, 𝑔
𝑗
𝑖
needs to be completed before

𝑔
𝑗 ′

𝑖′ , but this is not satisfied by the paths of the CT node). We use 𝑡 to

denote 𝜏 (𝑔 𝑗
𝑖
) as specified by the path of agent 𝑎𝑖 . CBS-PC splits the

CT node into two child CT nodes and resolves the precedence con-

flict by adding one of the following completion timestep constraints
to one child CT node and the other one to the other child CT node:

(1) 𝜏 (𝑔 𝑗
′

𝑖′ ) > 𝑡 : agent 𝑎𝑖′ must complete 𝑔
𝑗 ′

𝑖′ after timestep 𝑡 . In

the child CT node, the path of 𝑎𝑖′ is replanned, and 𝑔
𝑗 ′

𝑖′ is

thus completed after 𝑔
𝑗
𝑖
.

(2) 𝜏 (𝑔 𝑗
′

𝑖′ ) ≤ 𝑡 : agent 𝑎𝑖′ must complete𝑔
𝑗 ′

𝑖′ no later than timestep

𝑡 , which is already satisfied by the path of 𝑎𝑖′ . However, due

to precedence constraint ⟨𝑔 𝑗
𝑖
, 𝑔

𝑗 ′

𝑖′ ⟩, we have 𝜏 (𝑔
𝑗
𝑖
) ≤ 𝑡 − 1,

which is not satisfied by the path of 𝑎𝑖 . In the child CT node,

both constraints 𝜏 (𝑔 𝑗
′

𝑖′ ) ≤ 𝑡 and 𝜏 (𝑔 𝑗
𝑖
) ≤ 𝑡 − 1 are added, the

path of 𝑎𝑖 is replanned, and 𝑔
𝑗 ′

𝑖′ is thus completed at least one

timestep earlier than before.

When generating a child CT node with the completion timestep

constraint in (1), the precedence conflict is immediately resolved

since 𝑎𝑖′ is forced to complete 𝑔
𝑗 ′

𝑖′ after 𝑎𝑖 completes 𝑔
𝑗
𝑖
. When gen-

erating a child CT node with the completion timestep constraints

in (2), CBS-PC tries to find a path for 𝑎𝑖 that completes 𝑔
𝑗
𝑖
earlier

than 𝑡 , which is the timestep when 𝑔
𝑗
𝑖
is completed in the parent

CT node. Such a path often does not exist as 𝑡 is often the earliest

timestep when 𝑎𝑖 can complete 𝑔
𝑗
𝑖
, in which case CBS-PC prunes

the child CT node. However, if such a path does exist, it is possible

that the new path of agent 𝑎𝑖 still does not complete 𝑔
𝑗
𝑖
earlier than

𝜏 (𝑔 𝑗
′

𝑖′ ), in which case the two agents still have the precedence con-

flict. Nevertheless, 𝜏 (𝑔 𝑗
𝑖
) is guaranteed to decrease by at least one

timestep. So, if CBS-PC continues to try to resolve the precedence

conflict between the two agents, it will eventually either prune the

branch that involves the repeatedly occurring precedence conflict

or generate a child CT node where it is resolved.

One needs to decide which conflict to choose if the CT node to

be expanded contains multiple conflicts. Existing work shows that

choosing conflicts that increase the path cost in the child CT nodes

can improve the efficiency of CBS [1]. CBS-PC follows this principle

and prefers precedence conflicts over vertex or edge conflicts (and

breaks ties randomly) because the completion timestep constraint

(1) often increases the path cost. We have also tried the conflict

prioritization method in [1], but, unfortunately, this method turned

out to be too computationally expensive for MAPF-PC instances

s1 s1g11 s1g21
8 7,8 5,66,7

5

5

1 2 3 4 5 6 7 8 9

A

B

C

Figure 1: An example of low-level planning in CBS-PC.
Agent 𝑎1 has two goals 𝑔1

1
and 𝑔2

1
. Crosses represent ver-

tex constraints on 𝑎1, and the numbers below them are the
timesteps that 𝑎1 is not allowed to stay at the vertices. For
example, 𝑎1 is not allowed to stay at 𝐶5 at timesteps 5 and 6.

since it needs to find all paths with the minimum path costs (known

as MDD [15]) that complete all goals of each agent involved in each

conflict.

4.2 Low Level of CBS-PC
On the low level, we need to plan a path for an agent that (1) com-

pletes all its goals in order, (2) satisfies the constraints imposed by

the high level, and (3) minimizes the path cost. One might consider

planning the path segments for all goals sequentially instead of

planning the entire path at once. The following example shows that

planning sequentially can result in a sub-optimal path.

Example 1. Figure 1 shows an example where agent 𝑎1 has mul-
tiple vertex constraints, represented as crosses on their vertices and
numbers that specify their timesteps. If we plan path segments se-
quentially from one goal to the next, we first find a path segment to
𝐶5 at timestep 4 and then plan the path segment to 𝐶9. Because of
the vertex constraints on 𝐵5, 𝐶5, and 𝐶6 at timestep 5, 𝑎1 can move
only to 𝐶4 at timestep 5. Then, at the next timestep, because of the
vertex constraints on 𝐶4 and 𝐶5 at timestep 6, 𝑎1 can move only to
𝐶3, and so on. Eventually, 𝑎1 moves back to 𝐶1 at timestep 8 and
thus can reach 𝐶9 at timestep 16 the earliest. However, if we plan the
entire path of 𝑎1 at once, 𝑎1 can reach𝐶9 already at timestep 12 when
following the blue arrows.

CBS-PC uses the Multi-Label A* (MLA*) algorithm [5, 9] to find a

minimum-cost path that satisfies all constraints of the CT node. We

extend MLA* to support completion timestep constraints: (1) An

agent can complete a goal only at a timestep that is larger than the

lower bound on the completion timestep of the goal, if provided, and

(2) MLA* prunes any low-level search nodes in which the agent can

reach a goal vertex only after the upper bound on the completion

timestep of the goal, if provided.

4.3 Theoretical Analysis
CBS-PC differs from CBS in how the low level plans paths and

how it addresses precedence conflicts. MLA* is complete and opti-

mal [5]. Resolving precedence conflicts with completion timestep

constraints does not rule out any solution of a MAPF-PC instance

and, for every cost 𝑐 , there is only a finite number of CT nodes with

cost 𝑐 in CBS-PC. With a proof similar to the one for CBS, we can

therefore show that CBS-PC is complete and optimal.
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Figure 2: The STN for the root CT node of the MAPF-PC in-
stance in Example 2.

4.4 Improvements
We now present three techniques for improving the efficiency of

CBS-PC. One of them is a specialized technique for MAPF-PC, and

the other two are adopted from existing work on improving CBS.

Constraint propagation:CBS-PC only adds completion timestep

constraints when it picks a precedence conflict to split on. However,

additional completion timestep constraints can be inferred from

the existing ones in a way similar to how 𝜏 (𝑔 𝑗
𝑖
) ≤ 𝑡 − 1 is inferred

in Completion Timestep Constraint (2).

When generating a CT node, CBS-PC builds a Simple Temporal
Network (STN) for the CT node [3]. An STN is a directed acyclic

graph ⟨𝑉 ,TC⟩. Each vertex 𝑣 ∈ 𝑉 represents a time point, called an

event, and 𝜏 (𝑣) represents the occurrence time of 𝑣 . Each STN has a

reference event 𝑥0 ∈ 𝑉 that represents the “beginning of time,” and

𝜏 (𝑥0) is conventionally set to 0. Each edge ⟨𝑣, 𝑣 ′⟩ ∈ TC, annotated
with an interval [𝐿𝐵,𝑈𝐵], indicates that 𝑣 must occur between 𝐿𝐵

and 𝑈𝐵 time units after 𝑣 ′, that is, 𝜏 (𝑣 ′) − 𝜏 (𝑣) ∈ [𝐿𝐵,𝑈𝐵]. To
construct the STN for a CT node, for each goal 𝑔

𝑗
𝑖
, CBS-PC adds

a vertex 𝑣
𝑗
𝑖
to the STN to represent the completion of 𝑔

𝑗
𝑖
. CBS-PC

adds edges to the STN in three cases:

(1) We use 𝑑 (𝑥,𝑦) to denote the minimum cost needed to move

from 𝑥 to 𝑦 in graph 𝐺 while ignoring constraints and con-

flicts. For each agent 𝑎𝑖 , CBS-PC adds edge ⟨𝑥0, 𝑣1𝑖 ⟩ with
interval [𝑑 (𝑠𝑖 , 𝑔1𝑖 .𝑙𝑜𝑐), +∞) to the STN, and, for each pair of

consecutive goals 𝑔
𝑗
𝑖
and 𝑔

𝑗+1
𝑖

, CBS-PC adds edge ⟨𝑣 𝑗
𝑖
, 𝑣

𝑗+1
𝑖
⟩

with interval [𝑑 (𝑔 𝑗
𝑖
.𝑙𝑜𝑐, 𝑔

𝑗+1
𝑖

.𝑙𝑜𝑐), +∞) to the STN.

(2) For each precedence constraint ⟨𝑔 𝑗
𝑖
, 𝑔

𝑗 ′

𝑖′ ⟩ ∈ T , CBS-PC adds

edge ⟨𝑣 𝑗
𝑖
, 𝑣

𝑗 ′

𝑖′ ⟩ with interval [1, +∞) to the STN.

(3) For each completion timestep constraint 𝜏 (𝑔 𝑗
𝑖
) > 𝑡 , CBS-

PC adds edge ⟨𝑥0, 𝑣 𝑗𝑖 ⟩ with interval [𝑡 + 1, +∞) to the STN.

Similarly, for each completion timestep constraint 𝜏 (𝑔 𝑗
𝑖
) ≤ 𝑡 ,

CBS-PC adds edge ⟨𝑥0, 𝑣 𝑗𝑖 ⟩ with interval [0, 𝑡] to the STN.

The lower and upper bounds on the completion timestep of each

goal in the STN can be computed using the Bellman-Ford algorithm.

Each lower and upper bound can be converted to a completion

timestep constraint. CBS-PC adds these constraints to the generated

CT node if the CT node does not contain them already.

Example 2. Consider aMAPF-PC instance with three agents. Agent
𝑎1 has two goals, and agents 𝑎2 and 𝑎3 both have one goal. T =

{⟨𝑔1
1
, 𝑔1

2
⟩, ⟨𝑔1

1
, 𝑔1

3
⟩, ⟨𝑔1

2
, 𝑔1

3
⟩}. Figure 2 shows the corresponding STN for

⋯ ⋯

τ(g12) > d(s1, g11. loc)

τ(g13) > d(s1, g11. loc)

τ(g13) > d(s1, g11. loc) + 1

τ(g12) ≤ d(s1, g11. loc)
τ(g11) ≤ d(s1, g11. loc) − 1

τ(g13) ≤ d(s1, g11. loc)
τ(g11) ≤ d(s1, g11. loc) − 1

τ(g13) ≤ d(s1, g11. loc) + 1
τ(g12) ≤ d(s1, g11. loc)

(a)

⋯ ⋯

. . .

τ(g12) > d(s1, g11. loc)
τ(g13) > d(s1, g11. loc) + 1

(b)

Figure 3: CTs of CBS-PC with and without constraint propa-
gation when solving the MAPF-PC instance in Example 2.

the root CT node. The four solid edges are due to Case (1), and the
three dashed edges are due to Case (2). We assume that 𝑑 (𝑠1, 𝑔1

1
.𝑙𝑜𝑐) >

𝑑 (𝑠2, 𝑔1
2
.𝑙𝑜𝑐) > 𝑑 (𝑠3, 𝑔1

3
.𝑙𝑜𝑐).

Figure 3a shows the CT of CBS-PC without constraint propagation.
The text next to the edges describes the constraints added to the CT
nodes. Crossed-out CT nodes are pruned because CBS-PC cannot find
paths for some agents. CBS-PC generates multiple CT nodes to resolve
the precedence conflicts between 𝑔1

1
and 𝑔1

2
, 𝑔1

1
and 𝑔1

3
, and 𝑔1

2
and

𝑔1
3
, respectively. Figure 3b shows the CT of CBS-PC with constraint

propagation. The blue text next to the root CT node describes the
constraints generated from constraint propagation, which impose
lower bounds on the completion timesteps of the goals. Since the low-
level planner is aware of these completion timestep constraints, the
paths in the root CT node do not exhibit the previously mentioned
precedence conflicts.

Disjoint splitting: Different from the standard splitting rule of

CBS, disjoint splitting [8] picks one conflicting agent and then (1)

adds a constraint to one child CT node to prohibit this agent from

using the conflicting vertex or edge at the conflicting timestep and

(2) adds a constraint to the other child CT node to force this agent

to use the conflicting vertex or edge at the conflicting timestep,

which implies that no other agent can use the conflicting vertex

or edge at the conflicting timestep. Since disjoint splitting is able

to speed up different variants of CBS significantly, we use it in the

context of CBS-PC as well.

Target reasoning: A vertex conflict is a target conflict [7] if
and only if one of the conflicting agents, denoted as 𝑎𝑖 , terminates

before the conflicting timestep, denoted as 𝑡 . It is inefficient for CBS-

PC to resolve target conflicts with only vertex and edge constraints.

Instead, target reasoning [7] uses constraints 𝜏 (𝑔𝑙𝑖
𝑖
) > 𝑡 (the path

of 𝑎𝑖 needs to be replanned) and 𝜏 (𝑔𝑙𝑖
𝑖
) ≤ 𝑡 (the path of the other

conflicting agent needs to be replanned because only 𝑎𝑖 is allowed

to occupy 𝑔
𝑙𝑖
𝑖
.𝑙𝑜𝑐 at timestep 𝑡 ) to resolve target conflicts. Note that

𝑙𝑖 denotes the number of goals of agent 𝑎𝑖 .
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Figure 4: A two-agent MAPF-PC instance. Both agents have
two goals. Solid-line arrows represent the sequence of goal
vertices that agents need to visit, and dashed-line arrows rep-
resent the precedence constraints between goals.

5 PBS WITH PRECEDENCE CONSTRAINTS
We now introduce a suboptimal but more scalable MAPF-PC algo-

rithm, called PBS-PC, which adopts the PBS algorithm for MAPF

to solve our MAPF-PC problem. We start with a naïve variant of

PBS for MAPF-PC, which assigns priorities to agents to resolve

conflicts. We explain why naïve PBS does not find a solution for a

simple MAPF-PC instance, which motivates us to introduce an ad-

vanced variant, called PBS-PC, which resolves conflicts by assigning

priorities to goals.

5.1 Naïve PBS for MAPF-PC
Unlike CBS, PBS can be used to solve theMAPF-PC problemwithout

any change on the high level. On the low level, when PBS plans for

an agent, it uses MLA* to find a path that has the minimum cost

among all paths that avoid vertex, edge, and precedence conflicts

with the paths of all higher-priority agents. However, planning

for one agent after another can fail even for a simple MAPF-PC

instance.

Example 3. Consider the two-agent MAPF-PC instance shown
in Figure 4, where agents 𝑎1 and 𝑎2 have two goals each and T =

{⟨𝑔1
1
, 𝑔1

2
⟩, ⟨𝑔2

2
, 𝑔2

1
⟩}, that is, the first goal of 𝑎1 must be completed

before the first goal of 𝑎2 and the second goal of 𝑎1 must be completed
after the second goal of 𝑎2. In the root PT node, which has no priority
ordering between 𝑎1 and 𝑎2, PBS plans for each agent individually.
We have 𝜏 (𝑔1

1
) = 5 and 𝜏 (𝑔1

2
) = 3, which is a precedence conflict. PBS

splits the root PT node into two child PT nodes. In one child PT node, it
extends the priority ordering with 𝑎1 ≺ 𝑎2, meaning that it plans the
path of 𝑎1 first. This path has 𝜏 (𝑔1

1
) = 5 and 𝜏 (𝑔2

1
) = 8. PBS cannot

find a path for 𝑎2 because it is impossible to satisfy 𝜏 (𝑔1
2
) > 5 and

𝜏 (𝑔2
2
) < 8 simultaneously. In the other child PT node, it extends the

priority ordering with 𝑎2 ≺ 𝑎1, meaning that it plans the path of 𝑎2
first. This path has 𝜏 (𝑔1

2
) = 3 and 𝜏 (𝑔2

2
) = 8. PBS cannot find a path

for 𝑎1 because it is impossible to satisfy 𝜏 (𝑔1
1
) < 3. Thus, naïve PBS

fails immediately for this simple MAPF-PC instance.

5.2 PBS-PC
PBS cannot solve the MAPF-PC instance of Example 3 because

imposing priority orderings on agents is insufficient for resolving

conflicts caused by the precedence constraints among goals. We

thus propose PBS-PC, which assigns priority orderings to pairs of

goals and plans the path segment for one goal at a time.

Algorithm 1 shows the high level of PBS-PC. We use Γ to denote

the list of goals of all agents. Like PBS, PBS-PC performs a depth-

first search on the high level and stores all generated but not yet

Algorithm 1: High-Level Search of PBS-PC

1 ≺≺≺Root← ∅, Root.conflict← empty
2 ; foreach pair of consecutive goals 𝑔

𝑗
𝑖
and 𝑔

𝑗+1
𝑖

do
3 ≺≺≺Root← ≺≺≺Root ∪ {𝑔 𝑗𝑖 ≺ 𝑔

𝑗+1
𝑖
};

4 foreach ⟨𝑔 𝑗
𝑖
𝑔
𝑗 ′

𝑖′ ⟩ ∈ T do
5 ≺≺≺Root← ≺≺≺Root ∪ {𝑔 𝑗𝑖 ≺ 𝑔

𝑗 ′

𝑖′ };

6 Root.paths[𝑔 𝑗
𝑖
] ← empty for each goal 𝑔

𝑗
𝑖
;

7 STACK← {Root};
8 while STACK is not empty do
9 𝑁 ← STACK.pop();

10 succ← UpdatePath(𝑁 ); // Algorithm 2
11 if succ is false then
12 continue;

13 if 𝑁 .conflict is empty then
14 return 𝑁 .𝑝𝑎𝑡ℎ𝑠 ;

15 (𝑔 𝑗
𝑖
, 𝑔

𝑗 ′

𝑖′ ) ← 𝑁 .𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡 ;

16 foreach 𝑔 ∈ {𝑔 𝑗
𝑖
, 𝑔

𝑗 ′

𝑖′ } do
17 𝑔′ ← the goal in {𝑔 𝑗

𝑖
, 𝑔

𝑗 ′

𝑖′ } \ {𝑔};
18 𝑁 ′ ← 𝑁 ;

19 ≺≺≺𝑁 ′ ← ≺≺≺𝑁 ∪ {𝑔 ≺ 𝑔′};
20 𝑁 ′.conflict← empty;
21 foreach 𝑔′′ ∈ ({𝑔′′ | 𝑔′ ≺𝑁 ′ 𝑔′′} ∪ {𝑔′}) do
22 𝑁 ′.𝑝𝑎𝑡ℎ𝑠 [𝑔′′] ← empty;

23 Insert 𝑁 ′ into STACK;

24 return “No Solution”;

expanded PT nodes in a stack. Unlike PBS, the root PT node of

PBS-PC does not always have an empty priority ordering. PBS-

PC initializes the priority ordering (Lines 2-5) by (1) adding 𝑔
𝑗
𝑖
≺

𝑔
𝑗+1
𝑖

to ≺≺≺Root for each pair of consecutive goals of the same agent

and (2) adding 𝑔
𝑗
𝑖
≺ 𝑔

𝑗 ′

𝑖′ to ≺≺≺Root for each precedence constraint

⟨𝑔 𝑗
𝑖
, 𝑔

𝑗 ′

𝑖′ ⟩ ∈ T between the goals of two different agents. For each

node 𝑁 , 𝑁 .𝑝𝑎𝑡ℎ𝑠 stores the path segment of each goal. PBS-PC

beginswith an empty path segment for each goal in the root PT node

(Line 6). When expanding a PT node, PBS-PC invokes Algorithm 2

to plan path segments (Line 10). Algorithm 2 plans for the goals

in a topologically sorted order according to the priority ordering

(Line 25) and plans for one goal at a time until:

(1) PBS-PC cannot find a path segment for a goal (Lines 5-6),

and the PT node is pruned on Lines 11-12;

(2) PBS-PC finds a conflict among non-empty path segments

(Lines 33-35), and the PT node is split into two child PT nodes

on Lines 15-23; or

(3) the path segments for all goals are found, and PBS-PC returns

a solution for the MAPF-PC instance on Lines 13-14.

Function FindConflictingGoal(N , g) returns a goal whose planned
path segment has vertex or edge conflicts with the path segment of

𝑔 or returns empty if no such goal exists. When generating a child

PT node, PBS-PC extends the priority ordering of the parent PT



Algorithm 2: UpdatePath(PT node 𝑁 )

25 𝑇𝑜𝑝𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙𝑆𝑜𝑟𝑡 (Γ,≺≺≺𝑁 );
26 foreach 𝑔 ∈ Γ do
27 if 𝑁 .paths[𝑔] is empty then
28 𝑝 ← PlanPath(𝑁,𝑔); // Algorithm 3
29 if 𝑝 is empty then
30 return false;

31 𝑁 .paths[𝑔] ← 𝑝;

32 𝑔′ ← FindConflictingGoal(𝑁,𝑔);
33 if 𝑔′ is not empty then
34 𝑁 .conflict← (𝑔,𝑔′);
35 return true;

36 return true;

Algorithm 3: PlanPath(PT node 𝑁 , goal 𝑔
𝑗
𝑖
)

37 𝑃 ← {𝑁 .𝑝𝑎𝑡ℎ𝑠 [𝑔] | 𝑔 ≺𝑁 𝑔
𝑗
𝑖
};

38 if 𝑗 > 1 then
39 𝑡0 ← CompletionTimestep(𝑁 .paths[𝑔 𝑗−1

𝑖
]);

40 𝑙𝑜𝑐0 ← 𝑔
𝑗−1
𝑖

.𝑙𝑜𝑐;

41 else
42 𝑡0 ← 0;

43 𝑙𝑜𝑐0 ← 𝑠𝑖 ;

44 𝑇 ← max{CompletionTimestep(𝑁 .paths[𝑔]) | ⟨𝑔,𝑔 𝑗
𝑖
⟩ ∈ T }

or −1 if there is no such 𝑔 that ⟨𝑔,𝑔 𝑗
𝑖
⟩ ∈ T ;

45 𝑝 ← a minimum-cost path segment for goal 𝑔
𝑗
𝑖
that starts at

vertex 𝑙𝑜𝑐0 at timestep 𝑡0, ends at vertex 𝑔
𝑗
𝑖
.𝑙𝑜𝑐 after

timestep 𝑇 , and does not conflict with any path in 𝑃 (or

empty if no such path exists);

46 return 𝑝;

node with a new pair of goals. Let 𝑔′ denote the goal of the lower
priority in the new ordered pair. PBS-PC empties the path segments

of 𝑔′ and all paths that are of lower priority than it.

Algorithm 3 plans the path segment for goal 𝑔
𝑗
𝑖
. If 𝑗 = 1, that is,

𝑔
𝑗
𝑖
is the first goal of the agent, the start timestep and start vertex

of search are set to 0 and the start vertex of the agent, respectively.

Otherwise, the start timestep and start vertex are set to the com-

pletion timestep and goal vertex of the immediate previous goal of

𝑔
𝑗
𝑖
, respectively. The earliest timestep when 𝑎𝑖 is allowed to com-

plete 𝑔
𝑗
𝑖
can be computed by checking the completion timesteps

of all goals that need to be completed before 𝑔
𝑗
𝑖
(whose path seg-

ments have already been planned because goals are planned in a

topologically sorted order).

In any PT node of PBS-PC, there is no precedence conflict be-

tween any two non-empty path segments because Algorithm 3 only

finds path segments that satisfy all precedence constraints. The

returned solution does not contain a vertex or edge conflict because,

if there is one, the conflict will be found in Line 32, and PBS-PC

would not return the set of paths as a solution. Therefore, solutions

(a) random-32-32-20 (b) warehouse-10-20-10-2-1

Figure 5: The grid maps of the MAPF-PC instances used in
the experimental evaluation.

returned by PBS-PC are conflict-free. Similar to PBS, PBS-PC is

neither complete nor optimal.

6 EXPERIMENTAL EVALUATION
In this section, we compare the results of different variants of CBS-

PC, PBS, and PBS-PC on MAPF-PC instances with four-neighbor

grid maps. The variants of CBS-PC are CBS-PC, CBS-PC-c, CBS-PC-

t, CBS-PC-d, and CBS-PC-dct, where c adds constraint propagation,

d adds disjoint splitting, and t adds target reasoning. All algorithms

were implemented in C++
2
and share the same code base as much

as possible. We ran all experiments on t2.large AWS EC2 instances

with 8GB of memory. The time limit for solving each MAPF-PC

instance was five minutes.

To generate a MAPF-PC instance, we randomly generated the

start vertex of each agent and a set of goal vertices. Then, we began

with an empty precedence constraint set T , repeatedly picked a

random precedence constraint and added it to T if it was not in

T already and would not introduce cycles, until the number of

precedence constraints reached a given number (specified below).

Then, we used the Token Passing algorithm [11] to assign goals

greedily and generate the goal sequence for each agent.

We picked two gridmaps from theMAPF benchmark [16]: random-
32-32-20 and warehouse-10-20-10-2-1 (shown in Figure 5). For each

grid map, we ran two sets of experiments: (1) MAPF-PC instances

with different numbers of agents (ranging from 30 to 100), 200 goals,

and 120 precedence constraints. (2) MAPF-PC instances with dif-

ferent numbers of precedence constraints (ranging from 80 to 280),

200 goals, and 60 agents. For each number of agents or precedence

constraints, we generated 50 random instances.

Comparing variants of CBS-PC: Figures 6 and 7 show the

results for the CBS-PC variants. The success rate of an algorithm is

the percentage of MAPF-PC instances that it solves within the time

limit. For the CBS-PC variants without target reasoning, CBS-PC-d

almost always had slightly higher success rates than CBS-PC. CBS-

PC-c had similar or slightly worse success rates than the other two

variants when the number of precedence constraints was less than

200 because the computational overhead outweighs the benefit

of the technique. However, it had better success rates than the

other two variants when the number of precedence constraints was

large enough (namely, at least 240) because constraint propagation

significantly reduced the number of precedence conflicts that need

to be resolved.

The CBS-PC variants with target reasoning, CBS-PC-t and CBS-

PC-dct, had better success rates than the other three variants in

most of the experiments. CBS-PC-dct had better success rates than

2
https://github.com/HanZhang39/MAPF-PC

https://github.com/HanZhang39/MAPF-PC
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Figure 6: Results for CBS-PC variants on random-32-32-20.
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Figure 7: Results for CBS-PC variants on warehouse-10-20-
10-2-1.

CBS-PC-t when the number of precedence constraints was large but

similar success rates otherwise. The runtimes of CBS-PC-dct and

CBS-PC-t are averaged over all instances solved by both of them.

CBS-PC-dct and CBS-PC-t had similar average runtimes except

for some instances with a large number of precedence constraints

that CBS-PC-dct solved faster. We omit the runtimes of the other

three variants because they solved too few instances within the

time limit.

Comparing PBS and PBS-PC: Figures 8 and 9 show the re-

sults for PBS and PBS-PC. In general, PBS-PC outperformed PBS

in terms of both success rate and runtime. The success rates of

PBS stayed similar or even increased when the number of agents

increased. However, the success rates of PBS quickly dropped when

the number of precedence constraints increased, which shows that

PBS did not do a good job at solving MAPF-PC instances with

complex precedence constraints.

Comparing CBS-PC and PBS-PC: In general, PBS-PC outper-

formed all CBS-PC variants in terms of both success rate and run-

time. In Figures 8e, 8f, 9e, and 9f, we show the suboptimality results

for PBS-PC. The suboptimality ratio of PBS-PC on an instance is the

ratio of the SoC of the solution it finds to the optimal SoC. The dots

show the suboptimality ratios of PBS-PC on MAPF-PC instances

that were solved by some variant of CBS-PC and the lines show the

average suboptimality ratios. The suboptimality ratios of PBS-PC

were on average less than 1.1 in most cases and around 1.2 in the

worst case. The average suboptimality ratios of PBS-PC increased

as the number of agents increased. Interestingly, the average sub-

optimality ratios of PBS-PC decreased as the number of precedence

constraints increased, likely because agents are less likely to have

vertex or edge conflicts when they need to wait longer due to the

increasing number of precedence constraints.

Scalability of PBS-PC: We ran two additional experiments for

only PBS-PC on warehouse-10-20-10-2-1 to see how PBS-PC scales

on difficult instances: (1) MAPF-PC instances with different num-

bers of agents𝑚 (ranging from 100 to 500), 2𝑚 goals, and𝑚 prece-

dence constraints. (2) MAPF-PC instances with different numbers

of goals 𝑛 (ranging from 800 to 1800), 0.5𝑛 precedence constraints

were 0.5𝑛, and 200 agents. Figure 10 shows the results. PBS-PC

solved all instances with up to 300 agents in Experiment (1) and all

instances with 800 goals in Experiment (2).

7 RELATEDWORK
Numerous algorithms have been developed to solve multi-task

multi-agent path-finding problems by assigning tasks (in form of

goal locations) to agents with the purpose of minimizing the execu-

tion time. One representative approach is to formulate the problem

as Vehicle Routing Problem with Time Windows (VRPTW) and

minimize the execution time over the entire time horizon [2, 6]. A

survey of task-assignment algorithms can be found in [4]. How-

ever, most of these algorithms ignore collisions and thus cannot be

directly used in safety-critical scenarios. Moreover, as our MAPF-

PC algorithms are capable of planning with goal vertex sequences

and precedence constraints, they can be used in conjunction with

most of the aforementioned task-assignment algorithms to gen-

erate collision-free paths with respect to the assigned goal vertex

sequences.

Among all algorithms that plan collision-free paths for streams

of tasks, the algorithms in [2, 13] are able to handle precedence

constraints between tasks and thus are most related to ours. [2]

presents a four-level algorithm that is able to solve the general

Precedence-Constrained multi-agent Task Assignment and Path

Finding (PC-TAPF) problem, although it is demonstrated only on

assembly scenarios. Its first level iteratively searches for promis-

ing task assignments, and the other three levels plan collision-free

paths based on the task assignment. As the path planning module

of this algorithm solves the same problem as MAPF-PC, it is nei-

ther complete nor optimal since it plans each path segment in a

myopic way and thus does not consider the feasibility or optimality
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Figure 8: Results for PBS-PC and PBS on random-32-32-20.

of achieving the subsequent tasks. In comparison, CBS-PC gener-

ates provably optimal plans. While both the algorithm in [2] and

PBS-PC are suboptimal, PBS-PC is able to plan for 300 agents with

800 goals while the algorithm in [2] can merely plan for 40 agents

with 60 tasks in the same runtime. [13] also presents a complete

algorithm for solving a multi-task multi-robot path-finding problem

with precedence constraints. However, this algorithm relies on the

assumption that each task can only have one precedence constraint,

which prevents the algorithm from solving realistic scenarios with

complex precedence constraints. For example, one needs to intro-

duce several precedence constraints to model a scenario where

multiple packages need to be delivered to the same location before

a robot picks them up all together.

8 CONCLUSIONS AND FUTUREWORK
In this paper, we proposed the MAPF-PC algorithms CBS-PC and

PBS-PC. CBS-PC is complete and optimal, and we proposed several

improvements for it. PBS-PC is incomplete and suboptimal but

efficient in practice. Our experimental results showed that the most

advanced CBS-PC variants scale to dozens of agents and hundreds

of goals and precedence constraints and PBS-PC scales to hundreds

of agents, around one thousand goals, and hundreds of precedence

constraints.

An interesting direction for future work is to extend the MAPF-

PC problem with other types of inter-goal constraints, such as
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Figure 9: Results for PBS-PC and PBS on warehouse-10-20-
10-2-1.
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Figure 10: Scalability results for PBS-PC on warehouse-10-
20-10-2-1.

simple temporal constraints between the completion timesteps of

goals. Another direction is to study different types of MAPF-PC

algorithms, such as bounded sub-optimal or anytime algorithms.
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