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Abstract— We address multi-robot geometric task-and-
motion planning (MR-GTAMP) problems in synchronous,
monotone setups. The goal of the MR-GTAMP problem is to
move objects with multiple robots to goal regions in the presence
of other movable objects. To perform the tasks successfully and
effectively, the robots have to adopt intelligent collaboration
strategies, i.e., decide which robot should move which objects
to which positions, and perform collaborative actions, such
as handovers. To endow robots with these collaboration ca-
pabilities, we propose to first collect occlusion and reachability
information for each robot as well as information about whether
two robots can perform a handover action by calling motion-
planning algorithms. We then propose a method that uses the
collected information to build a graph structure which captures
the precedence of the manipulations of different objects and
supports the implementation of a mixed-integer program to
guide the search for highly effective collaborative task-and-
motion plans. The search process for collaborative task-and-
motion plans is based on a Monte-Carlo Tree Search (MCTS)
exploration strategy to achieve exploration-exploitation balance.
We evaluate our framework in two challenging GTAMP do-
mains and show that it can generate high-quality task-and-
motion plans with respect to the planning time, the resulting
plan length and the number of objects moved compared to two
state-of-the-art baselines.

I. INTRODUCTION

Task-and-motion planning (TAMP) is the problem of
combining task and motion planning to divide an objective,
such as assembling a table, into a series of robot-executable
motion trajectories [1]. Task planning is used to generate a
sequence of discrete actions, such as pick up a screwdriver
and drive a screw, while motion planning is used to compute
the actual trajectories the robot should execute.

Geometric task-and-motion planning (GTAMP) is an im-
portant subclass of TAMP where the robot has to move
several objects to regions in the presence of other movable
objects [2]. Previously, GTAMP has been addressed effi-
ciently in single-robot domains [2]–[4]. We focus on multi-
robot geometric task-and-motion planning (MR-GTAMP),
where the robots have to collaborate to move several objects
to regions in the presence of movable obstacles.

MR-GTAMP naturally arises in many multi-robot manip-
ulation domains, such as multi-robot construction, assembly
and autonomous warehousing [5], [6]. MR-GTAMP is in-
teresting as multi-robot systems can perform manipulation
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Fig. 1: Left: Packing colored objects into boxes. Right: Moving the colored
boxes to the green region.

tasks more effectively than single-robot systems and can also
perform manipulation tasks that are beyond the capabilities
of single-robot systems [7]. For example, in a product-
packaging task, a single robot may have to move a lot of
objects to clear a path to grasp an object, while a two-robot
system can easily perform a handover action to increase the
effectiveness of task execution. Examples of MR-GTAMP
problems are shown in Figure 1.

We address the following research question: How can
we generate collaboration strategies for multiple robots to
perform GTAMP tasks effectively?

Determining effective collaborative action sequences for
multiple robots is difficult as manipulation planning among
movable obstacles has been shown to be NP-hard in the
single-robot domain [8], [9]. MR-GTAMP is even harder
since one needs to decide which robot should move which
objects to which positions.

Our key insight to solving MR-GTAMP efficiently is
that we can compute information about the manipulation
capabilities of individual robots and their potential collab-
orative relationships by calling motion-planning algorithms
to prune the search space and guide the search process. For
example, based on the information that a robot cannot reach
an object, we can eliminate all task plans that involve the
action where the robot has to reach the object. Moreover, the
computed information can be used to generate collaborative
plans where each robot can perform the tasks that it excels
at.

We propose a two-phase framework. In the first phase, we
compute the collaborative manipulation information, i.e., the
occlusion and reachability information for individual robots
and the potential collaborative relationships between them
(Sec. IV-A). In the second phase, we search for collaborative
task-and-motion plans using a Monte-Carlo Tree Search
(MCTS) exploration strategy due to its good exploration-
exploitation balance (Sec. IV-B). Our search algorithm is
based on two key components: (i) the first key component
generates promising task skeletons for moving a specified set
of objects with the collected information from the first phase
by formulating a series of mixed-integer linear programs



Phase 1. Compute Collaborative
Manipulation Information (Sec.          )

Phase 2. Search for Collaborative 
Robot Plans (Sec.           -           )

Output: Robot Executable 
Task-And-Motion Plans

Target: Move the green 
objects to the green region 

IV .A

IV .B IV .D

Fig. 2: Overview of the proposed framework.

(MIPs), that can be solved efficiently by leveraging recent
developments in MIP solvers [10] (Sec. IV-C); and (ii) the
second key component efficiently finds feasible continuous
parameters for the generated task skeletons, such as the
locations to which to relocate objects (Sec. IV-D). Fig. 2
presents an overview of our framework.

We compare our framework with two state-of-the-art
baselines, namely, a general MR-TAMP framework [11]
and a multi-robot extension of the ResolveSpatialConstraints
(RSC) algorithm [8]. We show that our framework can solve
MR-GTAMP problem instances that are challenging for the
baseline methods. We also show that our framework can
generate high-quality task-and-motion plans with respect to
the planning time, the resulting plan length and the number
of objects moved compared to the baselines (Sec. V).

Our work makes the following assumptions, which are
common in MR-TAMP [7], [11]: (i) it considers only mono-
tone instances of the MR-GTAMP problem, where each
object is moved only once; and (ii) the execution of actions
by the robots is synchronized, i.e., the robots synchronously
start and stop moving. We plan to relax these assumptions
in future work.

II. RELATED WORK
There has been much work on solving single-robot

GTAMP (SR-GTAMP) problems efficiently [2]–[4] by uti-
lizing learning to guide planning. Several existing problem
types in the literature can also be seen as GTAMP prob-
lems. In [8], the “manipulation among movable obstacles”
(MAMO) problem is addressed, in which a robot moves
objects out of the way to move a specified object to its goal
location. In [9] and [12], [13], the object retrieval problem is
addressed, in which a target object has to be retrieved from
clutter by relocating the surrounding objects. In [14], [15],
the rearrangement planning problem is addressed, in which
a robot is tasked to move objects into a given configuration.
However, these methods do not plan collaboration strategies
in multi-robot domains.

There has been work in multi-robot domains on general
task and motion planning [11], [16], [17]. We focus on a
subclass of these problems, where we wish to move objects
in the presence of movable obstacles. In [18], [19], efficient
approaches are proposed for the multi-robot object retrieval
problem, assuming permanent object removal and consider-
ing one target object at a time, while our planner considers
several target objects at the same time and relocates the
obstacles within the workspace. Multi-robot rearrangement
planning problems [5]–[7] are also closely related to MR-
GTAMP. However, the rearrangement planning problems
assume that the goal configurations of the objects are given,
while MR-GTAMP requires the planners to decide which
objects to move and to which positions. There is also work

that focuses on task allocation and scheduling for multiple
robots, assuming that a sequence of discrete actions to be
executed is given [20]. However, MR-GTAMP requires the
planners to decide which discrete actions to execute, e.g.,
which objects to move.

III. PROBLEM FORMULATION
In a MR-GTAMP problem, we have a set of nR robots

R = {Ri}nR
i=1, a set of fixed rigid objects F, a set of nM

movable rigid objects M = {Mi}nM
i=1 and a set of nRe

regions Re = {Rei}nRe
i=1 . We assume that all objects and

regions have known and fixed shapes. The focus of our work
is not on grasp planning [21]. So, for simplicity, we assume
a fixed set of grasps GrM,R for each object M ∈ M and
robot R ∈ R pair. We denote the union of the sets of grasps
for all object and robot pairs as Gr.

Each object has a configuration, which includes its posi-
tion and orientation. Each robot has a configuration defined
in its base pose space and joint space. We are given the initial
configurations of all robots, objects and regions and a goal
specification G in form of a conjunction of statements of the
form INREGION(M,Re), where M ∈ M and Re ∈ Re,
which is true iff object M is contained entirely in region
Re.

We define a grounded joint action as a set of nR ac-
tions and motions performed by each robot at one time
step, i.e., the grounded joint action at time step j is an
nR-tuple sj = ⟨(ajR1

, ξjR1
), (ajR2

, ξjR2
), . . . , (ajRnR

, ξjRnR
)⟩,

where each action a is a pick-and-place action or a
wait1 action that the corresponding robot executes and
motion ξ is a trajectory that the corresponding robot ex-
ecutes, specified as a sequence of robot configurations.
In this work, we focus on pick-and-place actions because
of their importance in robotic manipulation in cluttered
space. Each pick-and-place action is a tuple composed of
⟨M,Re,Rpick, Rplace, gpick, gplace, P place

M ⟩, where M rep-
resents the object to move; Re represents the target region
for M ; Rpick and Rplace represent the robots that pick and
place M , respectively; gpick and gplace represent the grasps
used by Rpick and Rplace, respectively, and P place

M represents
the pose at which to place M . Moreover, we call a pick-
and-place action whose Rpick is different from Rplace a
handover action. Each grounded joint action will map the
configurations of the movable objects to new configurations
where the moved objects are at their new poses and the
unaffected objects remain at their old poses.

We define a partially grounded joint action as an nR-tuple
of the form ⟨āR1

, . . . , āRnR
⟩, where ā is a wait action or

a pick-and-place action without the placement information
P place
M . We refer to a pick-and-place action without the

placement information as a partially grounded pick-and-place
action since it has only the information about the grasps that
will be used.

We define a task skeleton S̄ as a sequence of partially
grounded joint actions. We want to find a task-and-motion

1As in [11], a robot with a wait action does not have to do anything but
can move to avoid other robots.



plan, i.e., a sequence of grounded joint actions S to change
the configurations of the objects to satisfy G.

A task-and-motion plan, is valid iff, at each time step
j: (i) the corresponding multi-robot trajectory Ξj =
⟨ξjR1

, ξjR2
, . . . , ξjRnR

⟩ is collision-free; (ii) the robots can
use the corresponding motion trajectories and grasp poses
to grasp the target objects and place them at their target
poses without collisions; and (iii) all handover actions can be
performed without inducing collisions. The considered col-
lisions include collisions between robots, collisions between
an object and a robot, and collisions between objects.

IV. OUR APPROACH
We present our two-phase MR-GTAMP framework

(Fig. 2) in this section. In the first phase, we compute
the collaborative manipulation information, i.e., the occlu-
sion and reachability information for individual robots and
the potential collaborative relationships between the robots
(Sec. IV-A). In the second phase, we use a Monte-Carlo Tree
Search exploration strategy to search for task-and-motion
plans (Sec. IV-B). The search process depends on a key
component that generates promising task skeletons (Sec. IV-
C) and a key component that finds feasible object placements
and motion trajectories for the task skeletons to construct
executable task-and-motion plans (Sec. IV-D).

A. Computing Collaborative Manipulation Information
Given a MR-GTAMP problem instance and the initial

configurations of all objects and robots, our framework first
computes the occlusion and reachability information for
individual robots, e.g., whether an object blocks a robot from
manipulating another object and whether a robot can reach a
region to place an object there. We also compute whether
two robots can perform a handover action for an object
by computing whether they can both reach a predefined
handover point to transfer the object. In this work, we only
consider handover actions for objects that are named in
goal specification G, because, these actions are critical for
generating feasible and high-quality collaborative task-and-
motion plans. We assume that all robots will return to their
initial configurations after each time step. Inspired by [4], we
use a conjunction of all true instances of a set of predicates
to represent the computed information. To define these pred-
icates, we need to define two volumes of workspace similar
to [4], [8]. The first volume Vpick(M, g,R, ξ) is the volume
swept by robot R to grasp object M with grasp g following
trajectory ξ. The second volume Vplace(M, g,R, P place

M , ξ)
is the volume swept by robot R and object M to transfer
the object to pose P place

M after trajectory ξ. Our predicates
are as follows:

• OCCLUDESPICK(M1,M2, g, R) is true iff object M1

overlaps with the swept volume Vpick(M2, g, R, ξ),
where ξ is chosen to be collision-free, if possible;

• OCCLUDESGOALPLACE(M1,M2, Re, g,R) is true iff
M1 is an object that overlaps with the swept volume
Vplace(M2, g, R, P place

M2
, ξ), where P place

M2
and ξ are

chosen to be collision-free, if possible, and the pair
⟨M2, Re⟩ is named in goal specification G;

• REACHABLEPICK(M, g,R) is true iff there exists a
trajectory for robot R to pick object M with grasp g;

• REACHABLEPLACE(M,Re, g,R) is true iff there exists
a trajectory for robot R to place object M in region Re
with grasp g; and

• ENABLEGOALHANDOVER(M, g1, g2, R1, R2) is true
iff two robots R1 and R2 can both reach a predefined
handover point for object M with grasps g1 and g2,
respectively, and the object M is named in goal speci-
fication G.

For a predicate instance to be true, the corresponding
trajectories are required to be collision-free with respect
to the given fixed objects. For a predicate instance of
ENABLEGOALHANDOVER to be true, the two robots should
not collide with each other.

The values of all the predicate instances can be computed
with existing inverse-kinematics solvers [22] and motion
planners [23]. Ideally, we wish to find trajectories for the
robots that have the minimum number of collisions with
the given objects, i.e., the minimum constraint removal [24]
trajectories. However, this is known to be very costly. Thus,
we follow previous work [4] and first attempt to find a
collision-free trajectory with respect to the movable and
fixed objects. If we fail, we attempt to find a collision-free
trajectory with respect to only the fixed objects.

In our implementation, we efficiently compute the pred-
icates for individual robots – with the exception of EN-
ABLEGOALHANDOVER – in parallel by creating an identical
simulation environment for each robot.

B. Searching for Task-and-Motion Plans

We now describe our search process (Fig. 3) for efficiently
finding high-quality collaborative task-and-motion plans. Our
search process generates a search tree whose nodes, denoted
as D, store sequences of grounded joint actions, denoted as
D.S, and whose edges, denoted as E, store task skeletons,
denoted as E.S̄. At each search iteration, we will select an
task skeleton to ground. We define a reward function, which
will be described in details later, as the optimization target for
task-skeleton selection. The value of an edge is the cumulated
reward it has received since the search starts.

Assume that we have a node Dj and an edge Ei coming
out of node Dj . If we successfully ground task skeleton
Ei.S̄, given a sequence of already grounded joint actions
D.S, with the task-skeleton grounding component (Sec. IV-
D), the resulting executable task-and-motion plan is a se-
quence of grounded joint actions with D.S as postfix.
However, there can be situations, where a task skeleton
cannot be grounded without moving some objects that are
not planned to be moved in that task skeleton (Sec. IV-D).
In these situations, we generate new task skeletons to move
those objects with the task-skeleton generating component
(Sec. IV-C).

We propose a Monte-Carlo Tree Search (MCTS) explo-
ration strategy to balance exploration (exploring different
candidate task skeletons) and exploitation (biasing the search
towards the branches that have received high rewards).
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Fig. 3: Summary of the search process in the second phase of our framework.
Blue arrows represent the workflow for initializing the search tree. Yellow
arrows represent a search iteration that results in an updated set of objects to
be moved and thus a new set of task skeletons to be grounded. Red arrows
represent a search iteration that results in an executable plan.

We first generate an initial set of task skeletons (Sec. IV-
C) for moving a set of objects named in the goal speci-
fication, utilizing the computed collaborative manipulation
information (Sec. IV-A). We then initialize the search tree
by adding a root node D0 for selecting from the initial set of
task skeletons. At each search iteration, we have four phases:
selection, expansion, evaluation and backpropagation.
Notation. We use |S| and |S̄| to denote the number of objects
intended to be moved in sequences of grounded joint actions
S and task skeletons S̄, respectively.
Selection phase. In the selection phase, we start at the root
node and recursively select the edge with the highest Upper
Confidence Bound (UCB) value until we reach an edge Ei

with a task skeleton that has not been grounded yet. We
denote the tail node of edge Ei as Dj . We follow the UCB
value formula used in [25]. The UCB value of the pair of
node Dj and edge Ei is: Q(Dj , Ei) = Ei.value

Ei.visits+1 + c ×
Ei.prior ×

√
Dj .visits

Ei.visits+1 , where Ei.value is the cumulated
reward edge Ei has received so far, Dj .visits and Ei.visits
are the number of times Dj and Ei have been selected, c
is a constant to balance exploration and exploitation, and
Ei.prior is used to bias the search with domain knowl-
edge [25]. In our implementation, we set Ei.prior to 1

|Ei.S̄|
to prioritize grounding the task skeletons with fewer objects
to move. The value of an edge Ei.value is initialized to 0.

Assume that we select edge Ei at node Dj in the selection
phase.
Expansion phase. In the expansion phase, we create a new
node Dj.i as the head node of edge Ei.
Evaluation phase. In the evaluation phase, we use the task-
skeleton grounding component (Sec. IV-D) to ground task
skeleton Ei.S̄ associated with Ei to compute reward r for
selecting edge Ei. There are three possible outcomes: (i)
If we fail at grounding, we set r to 0. (ii) If we obtain a
sequence of grounded joint actions S∗, then we found an
executable task-and-motion plan. In this case, we set r to
1 + α 1

|S∗| , where α is a constant hyperparameter used to
balance the two terms of the reward and is set to 1 in our
experiments (Sec. V). The first term of the reward motivates

the search algorithm to select branches where more actions
have been grounded, and the second term motivates the
search algorithm to select branches that will move fewer
objects. (iii) If we obtain a sequence of grounded joint
actions S′ and a set of objects M∗, then we have to move
objects M∗ to transport the already grounded joint actions S′

into an executable task-and-motion plan. In this case, we call
the task-skeleton generating component (Sec. IV-C) to move
M∗. If we can not find any task skeleton to move M∗, then
we set r to 0. However, if we find a set of task skeletons {S̄},
then we set r to S′.length

S′.length+S̄∗.length
+α 1

|S′|+|S̄∗| , where S̄∗ is
the task skeleton with the minimum number of time steps in
{S̄}, S′.length and S̄∗.length represent the number of time
steps of S′ and the number of time steps of S̄∗, respectively.

We use node Dj.i to store the returned grounded joint
actions S′ as Dj.i.S. In the third scenario, if we find new
task skeletons we create new edges to store them for node
Dj.i. If no new edge is created, we mark node Dj.i as a
terminal node.
Backpropagation phase. In the backpropagation phase, we
update the cumulated reward of the selected edges {Esel}
with the computed reward r according to Esel.value =
Esel.value+ r. We also increment the number of visits of
the selected edges and nodes by 1.

In our implementation, we keep tracking the grounding
failures for different task skeletons similar to [26], so that
we can efficiently skip over those branches where grounding
their task skeletons is known to be infeasible.

C. Key Component 1: Generating Promising Task Skeletons

One key component in the second phase (Sec. IV-B) of our
framework is to generate promising task skeletons {S̄}, i.e.,
sequences of actions without the placement and trajectory
information, for moving a set of objects M∗ given a sequence
of already grounded joint actions S′. It will be called at
the initialization stage of the search process, where S′ is
empty and M∗ is the set of objects named in the goal
specification of the problem instance. It will also be called
during the search process when the third scenario happens in
the evaluation phase. The task-skeleton generating algorithm
is designed in a way such that we can utilize the computed
collaborative manipulation information from the first phase
(Sec. IV-A) to eliminate task plans that include infeasible
actions and prioritize motion planning for high-quality task
plans that have a small number of time steps and a small
number of objects to be moved.
Notation. Assume that we want to generate task skeletons
to move objects M∗ given a sequence of grounded joint
actions S′. The set of objects included in S′ cannot be moved
again because of the monotone assumption. For simplicity
of presentation, we slightly abuse M to denote the movable
objects not included in S′.
Building the collaborative manipulation task graph. To
reason about the collaborative manipulation capabilities of
the individual robots, we encode the computed information
as a graph. We build a collaborative manipulation task graph
(CMTG) to capture the precedence of the manipulations of
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different objects, i.e., we can only move an object after we
move the obstacles that block the pick-and-place action we
are going to execute, based on the computed information
from the first phase (Sec. IV-A). Since we only compute
occlusion information for placing objects named in the goal
specification, the precedences encoded in the CMTG lack
occlusion information for relocating objects that are not
named in the goal specification. Instead, we assume that
we will always find the feasible places to relocate these
objects. We determine the exact object placements during
task-skeleton grounding (Sec. IV-D).

A CMTG (Fig. 4) has two types of nodes: An object node
represents an object M ∈ M; and an action node represents
a partially grounded pick-and-place action ā, i.e. a pick-and-
place action without placement information. A CMTG has
three types of edges: An action edge is an edge from an
object node to an action node. It represents moving the object
represented by the object node with the action represented
by the action node. A block-pick edge is an edge from an
action node to an object node. It represents that the object
represented by the object node obstructs the pick action of
the action represented by the action node. A block-place edge
is an edge from an action node to an object node. It represents
that the object represented by the object node obstructs the
place action of the action represented by the action node.
All block-place edges are connected to the action nodes that
move the objects named in the goal specification. A CMTG
has a set of object nodes that represents the input objects
M∗ that must be moved.

Given the computed collaborative manipulation informa-
tion and a set of objects M∗ to move, we incrementally
construct a CMTG by iteratively adding object M ∈ M∗ to
the CMTG with Alg. 1. Given the CMTG C built so far and
an object M to add, we first add an object node representing
M to C (Alg. 1, line 3). Then, for each pair of a robot
R ∈ R and its grasp gM,R ∈ GrM,R, we find all partially
grounded pick-and-place actions ā that move object M to its
target region ReM with R as the pick robot (Alg. 1, line 4-
18). For each partially grounded pick-and-place action ā, we
find all movable objects that block the pick action of ā and
add the corresponding block-pick edges (Alg. 1, line 26-29).
If M is named in goal specification G, then we also find
all movable objects that block the place action of ā and add
the corresponding block-place edges (Alg. 1, line 30-34). We

Algorithm 1 ADDOBJECT(M,C)
1: if M ∈ C.object nodes then
2: return
3: C.object nodes.add(M)
4: if M is named in goal specification G then
5: ReM = GETGOALREGION(M )
6: else
7: ReM = GETCURRENTREGION(M )
8: for Rpick ∈ R do
9: for g

M,Rpick ∈ Gr
M,Rpick do

10: ā = {}
11: if REACHABLEPICK(M, g

M,Rpick , R
pick) then

12: if REACHABLEPLACE
(M,ReM , g

M,Rpick , R
pick) then

13: ā.add((M,ReM , Rpick, Rpick,
g
M,Rpick , gM,Rpick ))

14: if M is named in goal specification G then
15: for Rplace ∈ R \ {Rpick} do
16: for g

M,Rplace ∈ Gr
M,Rplace do

17: if ENABLEGOALHANDOVER
(M, g

M,Rpick , gM,Rplace , R
pick, Rplace) and

REACHABLEPLACE
(M,ReM , g

M,Rplace , R
place) then

18: ā.add((M,ReM , Rpick, Rplace,
g
M,Rpick , gM,Rplace ))

19: for ā ∈ ā do
20: Rpick

ā is the robot to pick M in ā
21: gpick

ā is the grasp used by Rpick
ā in ā

22: Rplace
ā is the robot to place M in ā

23: gplace
ā is the grasp used by Rplace

ā in ā
24: C.action nodes.add(ā)
25: C.action edges.add(M, ā)
26: for Mj ∈ M do
27: if OCCLUDESPICK

(Mj ,M, gpick
ā , Rpick

ā ) then
28: ADDOBJECT(Mj ,C)
29: C.block pick edges.add(ā,Mj)
30: if M is named in goal specification G then
31: for Mj ∈ M do
32: if OCCLUDESGOALPLACE

(Mj ,M,ReM , gplace
ā , Rplace

ā ) then
33: ADDOBJECT(Mj ,C)
34: C.block place edges.add(ā,Mj)

recursively add the blocking objects in a similar way (Alg. 1,
lines 28 and 33).
Mixed-integer linear program formulation and solving.
Given a CMTG C, we find a set of task skeletons that
specify which robot will move which object at each time
step. We assume that each object will be moved at most once,
i.e., we assume that the problem instances are monotone.
Given a time step limit T , we cast the problem of finding
a task skeleton that has a minimum number of objects to
be moved as a mixed-integer linear program (MIP). We
encode the precedence of manipulating different objects as
formal constraints in the MIP such that we can generate task
skeletons that are promising to be successfully grounded. We
incrementally increase the time step limit T . In our imple-
mentation, the maximum time step limit is a hyperparameter.

For simplicity of presentation, we slightly abuse M again
to denote the objects in C. We use M∗ ⊆ M to denote the
objects that are intended to be moved. We slightly abuse ā to
denote the set of partially grounded pick-and-place actions
in C. We use Eā = {(M, ā)} to denote the set of action
edges in C. We use Epick

B = {(ā,M)} to denote the set
of block-pick edges and Eplace

B = {(ā,M)} to denote the
set of block-place edges in C, EB = Epick

B ∪Eplace
B , where

M ∈ M and ā ∈ ā. We define the binary variables Xt
M,ā

and Xt
ā,M , where t ∈ [1, . . . , T ], (M, ā) ∈ Eā and (ā,M) ∈

EB . Xt
M,ā = 1 implies that action ā is executed at time



step t′ s.t. t′ ≥ t. Xt
ā,M = 1 implies that object M can be

considered for being moved at time step t since it blocks
action ā which is executed at or after time step t.

Our MIP model is shown in the following. The implica-
tions in constraint (11) and constraint (12) are compiled to
linear constraints using the big-M method [27]:

minimize
∑

(M,ā)∈Eā
X

1
M,ā

X
t
M,ā ≥ X

t+1
M,ā, ∀(M, ā) ∈ Eā, t ∈ [1, T − 1] (1)

X
t
M,ā = X

t
ā,M′ , ∀(M, ā) ∈ Eā, (ā,M

′
) ∈ EB , t ∈ [1, T ] (2)

X
t
M,ā′ ≤

∑
(ā,M)∈EB

X
t
ā,M , ∀M ∈ M \ M

∗
, (M, ā

′
) ∈ Eā,

t ∈ [1, T ] (3)∑
(M,ā)∈Eā s.t. R in ā

X
T
M,ā ≤ 1, ∀R ∈ R (4)∑

(M,ā)∈Eā
X

T
M,ā ≥ 1 (5)∑

(M,ā)∈Eā s.t. R in ā
X

t
M,ā ≤ 1 +

∑
(M,ā)∈Eā s.t. R in ā

X
t+1
M,ā,

∀R ∈ R, t ∈ [1, T − 1] (6)∑
(M,ā)∈Eā

X
t
M,ā ≥ 1 +

∑
(M,ā)∈Eā

X
t+1
M,ā, t ∈ [1, T − 1] (7)∑

(M,ā)∈Eā
X

1
M,ā = 1, ∀M ∈ M

∗ (8)∑
(M,ā′)∈Eā

X
1
M,ā′ ≥ X

1
ā,M , ∀(ā,M) ∈ EB (9)∑

(M,ā)∈Eā
X

1
M,ā ≤ 1, ∀M ∈ M (10)

X
1
ā,M = 1 =⇒

∑
t∈[1,...,T ]

X
t
ā,M ≥

(
∑

(M,ā′)∈Eā

∑
t∈[1,...,T ]

X
t
M,ā′ ) + 1, ∀(ā,M) ∈ E

pick
B (11)

X
1
ā,M = 1 =⇒

∑
t∈[1,...,T ]

X
t
ā,M ≥

(
∑

(M,ā′)∈Eā

∑
t∈[1,...,T ]

X
t
M,ā′ ), ∀(ā,M) ∈ E

place
B (12)

Constraint (1) enforces that Xt
M,ā indicates whether we

have selected ā at or after time step t. Constraint (2) enforces
that, if an action is selected, then the objects that obstruct
it are also moved. Constraint (3) enforces that, besides the
objects in M∗, we only move objects that obstruct the actions
we have selected. Constraints (4 − 7) enforce that, at each
time step, we select at least one action, while each robot
executes at most one action. Constraint (8) enforces that the
objects in M∗ are moved. Constraint (9) enforces that all
obstacles for the selected actions are moved, while constraint
(10) enforces that each object is moved only once. Constraint
(11) enforces that each object is moved after the obstacles
for its pick action have been moved. Constraint (12) enforces
that each object is moved after the obstacles for its place
action have been moved. The objective function represents
the number of moved objects.

From a MIP solution, we construct a task skeleton which
is grounded later. Moreover, we want to construct multiple
task skeletons since some task skeletons may be impossible
to ground. Every time we obtain a solution, we add a con-
straint to the MIP model to enforce that we find a different
solution from the existing ones until we collect enough task
skeletons [28]. In our implementation, the maximum number
of task skeletons is a hyperparameter that varies for different
problem instances.

D. Key Component 2: Task-Skeleton Grounding
The second key component in the search phase (Sec. IV-

B) is to ground the task skeletons, i.e., to find the object
placements and motion trajectories for the partially grounded
pick-and-place actions. We use a reverse search algorithm
inspired by [8] since forward search for continuous parame-
ters of long-horizon task skeletons without any guidance is

very challenging [2]. The insight behind the reverse search
strategy is to use the grounded future joint actions as the
artificial constraints to guide the grounding for the present
time step.

The input to this component is a task skeleton S̄ of T time
steps and a sequence Sfut of future grounded joint actions.
We denote the volume of work space occupied by grounded
joint actions Sfut as Vfut. We denote the set of movable
objects that will be moved by grounded joint actions Sfut

as Mfut. We denote the set of movable objects that will
not be moved by task skeleton S̄ and grounded joint actions
Sfut as Mout. For time step t ∈ [1, . . . , T ], we denote the
set of objects that are planned to be moved as Mt and the
set of robots that are planned to move them as Rt. Recall
that we denote the goal specification and the set of movable
objects as G and M, respectively.

The grounding starts at the last time step T . For time
step t, we first sample placements for objects Mt that are
collision-free with respect to objects Mout ∪ Mfut, fixed
objects F and volume Vfut. The sampled placements should
not collide with volume Vfut, because, otherwise, they will
prevent the execution of future grounded joint actions that
occupy Vfut.

Given the placements, we plan pick trajectories and place
trajectories for objects Mt and robots Rt that are collision-
free with respect to objects F∪Mfut∪Mout. We note that,
in addition to the fixed objects F and the objects Mout, the
planned trajectories should not collide with the objects Mfut

that are moved in future grounded joint actions.
Since we may move multiple robots and objects con-

currently, we do not allow collisions between the robots,
collisions between the moved objects and collisions between
a robot and a moved object that is not intended to be
manipulated by that robot. If we succeed in grounding the
joint action at time step t, then we expand volume Vfut with
the volume occupied by the newly planned robot and object
trajectories, expand the set Mfut with the moved objects Mt

and expand the grounded joint actions Sfut with the newly
grounded joint action. We then start to ground the joint action
at time step t−1. If we succeed in grounding the joint actions
at every time step, we return an executable task-and-motion
plan S∗ = Sfut. However, if we fail at grounding the joint
action at time step t, we relax the collision constraints by
allowing the sampled placements and trajectories to collide
with the objects Mout since we can generate new skeletons to
move them later. If we succeed after relaxing the constraints,
then we terminate the grounding and return the sequence of
the grounded joint actions S′ = Sfut and a set of objects
M∗. The set of objects M∗ consists of the objects that are
named in the goal specification G but have not yet been
moved and the movable objects in the environment that
occlude the grounded joint actions S′. During the search
process (Sec. IV-B), the returned S′ and M∗ are then used
as input to the first key component (Sec. IV-C) to generate
new task skeletons. If, after relaxing the collision constraints,
we still cannot find feasible placements and paths, then we
simply return failure.



TABLE I: Comparison of the proposed method with two baseline methods in the two benchmark domains regarding the success rate, planning time,
makespan and motion cost. The numbers in the names of the problem instances indicate the numbers of the goal objects and the movable objects besides
the goal objects. In PA5, PA7 and PA10, each problem instance has 3 goal objects. We omit the planning time and solution quality results for Ap2 on
PA10 because its success rate is significantly lower than those of the other two methods.

Problem Instance Success rate % Planning time (s) Makespan Motion cost

Ap1 Ap2 Ours Ap1 Ap2 Ours Ap1 Ap2 Ours Ap1 Ap2 Ours
PA5 100.0 85.0 100.0 5.6 (±1.3) 4.7 (±0.7) 2.4 (±0.2) 3.0 (±0.2) 3.1 (±0.2) 2.8 (±0.2) 3.8 (±0.2) 3.6 (±0.2) 3.6(±0.2)
PA7 80.0 40.0 100.0 39.8 (±12.8) 5.8 (±2.0) 4.0 (±0.9) 3.7 (±0.3) 2.8 (±0.4) 3.1 (±0.2) 4.8 (±0.3) 3.8 (±0.3) 4.1 (±0.2)
PA10 55.0 25.0 90.0 129.2 (±58.2) N/A 19.6 (±6.1) 4.6 (±0.6) N/A 4.2 (±0.3) 5.6 (±0.6) N/A 5.2 (±0.4)
BO8 70.0 N/A 95.0 466.8 (±91.0) N/A 104.3 (±14.6) 4.6 (±0.1) N/A 3.5 (±0.3) 7.2 (±0.2) N/A 5.5 (±0.5)

V. EXPERIMENTS
We empirically evaluate our framework in two challenging

domains and show that it can generate high-quality col-
laborative task-and-motion plans more efficiently than two
baselines.
A. Baselines

We compare our framework with two state-of-the-art
TAMP frameworks. We provide both baseline planners with
information about the reachable regions of each robot.

Ap1 is a multi-robot extension of the RSC algorithm [8]
by assuming that the robots form a single composite robot.
The action space includes all possible combinations of the
single-robot actions and collaboration actions.

Ap2 is a general MR-TAMP framework [11] that is
efficient in searching for promising task plans based on
the constraints incurred during motion planning. We imple-
mented the planner in a way such that geometric constraints
can be utilized efficiently, e.g., the planner can identify that
it needs to move the blocking objects away before it can
manipulate the blocked objects.
B. Benchmark Domains

We evaluate the efficiency and effectiveness of our method
and the two baselines in the packaging domain shown in
Fig. 1 (left) and the box-moving domain shown in Fig. 1
(right).
Packaging (PA): In this domain, each problem instance
includes 2 robots, 3 to 5 goal objects, 2 to 13 movable objects
besides the goal objects, 1 start region and 3 goal regions. As
in [4], we omit motion planning and simply check for colli-
sions at the picking and placing configurations computed by
inverse kinematics solvers in this domain, because collisions
in this domain mainly constrain the space of feasible picking
and placing configurations. We use Kinova Gen2 lightweight
robotic arms. For each benchmark problem instance, we
conduct 20 trials with a timeout of 1, 200 seconds.
Box-moving (BO): In this domain, each problem instance
includes 2 robots, 2 goal objects, 6 movable objects besides
the goal objects, 1 start region and 1 goal region. We use PR2
robots. In this domain, we do not consider handover actions,
because, they do not contribute significantly to generating
feasible and high-quality plans for MR-GTAMP problems
with mobile robots in synchronous setups. For each bench-
mark problem instance, we conduct 20 trials with a timeout
of 1, 200 seconds. In this domain, we compare our method
only with Ap1, since Ap2 is restricted to manipulators.

We use bidirectional rapidly-exploring random trees [23]
for motion planning and IKFast [22] for inverse kinematics
solving. All methods share the same grasp sets, the same
sets of single-robot actions, and the same sets of collabora-
tion actions. All experiments were run on an AMD Ryzen

Threadripper PRO 3995WX Processor with a memory of
64GB.
C. Results

We refer to the number of time steps as makespan and the
number of moved objects as motion cost.
Planning time and success rate. Table I shows that our
method outperforms both baseline methods on all problem
instances with different numbers of goal objects and movable
objects with respect to both the planning times and success
rates. Ap1 and our method achieve higher success rates on
all problem instances than Ap2 because the reverse search
strategy (Sec. IV-D) utilized in Ap1 and our method finds
feasible object placements much more efficiently than the
forward search strategy used in Ap2. Moreover, Ap2 can
generate task plans that includes irrelevant objects while
Ap1 and our method focus on manipulating the important
objects, like blocking objects for necessary manipulation or
goal objects. Our method achieves higher success rates with
shorter planning times than Ap1 on the difficult problem
instances PA7, PA10 and BO8 because our method first
generates promising task skeletons (Sec. IV-C) that use the
information about the collaborative manipulation capabilities
of the individual robots to prune the task plan search space,
which can be extremely large when there are many objects
and multiple robots [11]. The main cause of failure of
our method is running out of task skeletons which can
be addressed by incrementally adding more task skeletons
during the search process.
Solution quality. Table I shows that our method can generate
high-quality task-and-motion plans with respect to the mo-
tion cost and the makespan. Our method first generates task
skeletons with short makespans by incrementally increasing
time step limit and with low motion costs by incorporating
the motion cost into the objective function of the MIP
formulation (Sec. IV-C). On the other hand, our MCTS
exploration strategy motivates the planner to search for high-
quality plans with small numbers of moved objects. It should
be noted that, although Ap2 generates plans with lower
motion costs and shorter makespans for PA7, it has lower
success rates than our method. Also, Ap1 generates plans
that move significantly more objects for PA7, PA10 and BO8
than our method because it uses a depth-first search strategy
for finding feasible plans [8].
TABLE II: The results of the proposed method in domain PA regarding the
success rate, planning time, makespan and motion cost. The numbers in the
names of the problem instances indicate the numbers of the robots.

Problem Instance Success rate % Planning time (s) Makespan Motion cost

2 robots 60.0 148.4 (±36.8) 6.1 (±0.4) 8.9 (±0.4)
3 robots 80.0 99.0 (±48.6) 4.9 (±0.3) 8.2 (±0.5)
4 robots 85.0 109.1 (±33.6) 4.7 (±0.3) 8.2 (±0.4)

Scalability evaluation. We evaluate the scalability of our



method in the PA domain with 18 movable objects, including
5 goal objects, and 2 to 4 robots. Table II shows that our
method can solve these large problem instances. Moreover,
for problem instances with 3 and 4 robots, it achieves
higher success rates, shorter makespans and lower motion
costs compared to the problem instances with 2 robots. This
shows that our method can generate intelligent collaboration
strategies for multiple robots.

VI. CONCLUSION
In this paper, we presented a framework for MR-GTAMP

problems by proposing a novel MIP formulation to utilize
information about the collaborative manipulation capabil-
ities of the individual robots to generate promising task
skeletons for guiding the planning search. We proposed an
efficient task-skeleton grounding algorithm inspired by the
previous work on MAMO [8]. The proposed components
are integrated via a Monte-Carlo Tree Search exploration
strategy that searches for high-quality task-and-motion plans.
We showed that our framework outperforms two baselines
on two challenging MR-GTAMP problems with respect to
the planning time and success rates, can generate high-
quality plans with respect to the resulting plan length and the
number of objects moved, and can scale up to large problem
instances.

While we have assumed full observability of the scene,
we plan to account for sensing limitations in the future [29],
[30]. Future work also includes using learning to improve
the planning efficiency [4] and extending the developed
techniques to more general MR-TAMP problems [3] and
more diverse environments [31].
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critic method for task and motion planning problems using planning
experience,” in AAAI Conference on Artificial Intelligence, vol. 33,
no. 01, Jul. 2019, pp. 8017–8024.

[3] B. Kim and L. Shimanuki, “Learning value functions with relational
state representations for guiding task-and-motion planning,” in Confer-
ence on Robot Learning, vol. 100, 30 Oct–01 Nov 2020, pp. 955–968.

[4] B. Kim, L. Shimanuki, L. P. Kaelbling, and T. Lozano-Pérez, “Rep-
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