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Abstract

Mutex propagation and its concomitant symmetry-breaking
techniques have proven useful in Multi-Agent Path Find-
ing (MAPF) with point agents. In this paper, we show that
they can be easily generalized to richer MAPF problems. In
particular, we demonstrate their application to MAPF with
“Large” Agents (LA-MAPF). Here, agents can occupy mul-
tiple points at the same time according to their fixed shapes
and sizes. While existing rule-based symmetry-breaking tech-
niques are difficult to generalize from point agents to large
agents, mutex-based symmetry-breaking techniques can be
generalized easily. In a Conflict-Based Search (CBS) frame-
work for LA-MAPF, we also develop a mutex-based conflict-
selection strategy to further enhance the efficiency of the
search. Through experiments on various maps, we show that
our techniques significantly improve MC-CBS, a state-of-the-
art optimal LA-MAPF algorithm, in terms of both success
rate and runtime.

Introduction and Related Work
The Multi-Agent Path-Finding (MAPF) problem is a gener-
alization of the single-agent path-finding problem to multi-
ple agents. Each agent is required to move from a given start
vertex to a given goal vertex on a given graph while avoid-
ing collisions with other agents. Solving the MAPF problem
optimally is known to be NP-hard for various objective func-
tions (Yu and LaValle 2013; Ma et al. 2016). Although the
MAPF problem arises in many real-world application do-
mains (Wurman, D’Andrea, and Mountz 2008; Morris et al.
2016), MAPF research has mostly focused on point agents,
i.e., agents that have no shape or size.

MAPF with Large Agents (LA-MAPF) is a generaliza-
tion of MAPF that bestows shape and size to the agents to
make them more realistic. However, generalizing existing al-
gorithmic techniques for MAPF to LA-MAPF can be non-
trivial. For example, while Conflict-Based Search (CBS) is
designed to solve the MAPF problem, generalizing it to
solving the LA-MAPF problem efficiently requires more so-
phisticated reasoning, as encapsulated in Multi-Constraint
CBS (MC-CBS) (Li et al. 2019b).

Another important paradigm for enhancing search in
MAPF with point agents is symmetry breaking. Existing
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symmetry-breaking techniques fall into two categories: (a)
rule-based techniques (Li et al. 2019a, 2020) and (b) mutex-
based techniques (Zhang et al. 2020; Walker et al. 2021).
However, none of these techniques have been generalized
to LA-MAPF. Rule-based techniques are human-generated,
handle only limited kinds of symmetries, and are difficult
to generalize to LA-MAPF. Mutex-based techniques are de-
rived from constraint propagation and handle more general
kinds of symmetries.

In later sections, we describe how mutex propagation
and its concomitant symmetry-breaking techniques can be
generalized to LA-MAPF. In fact, the generalization makes
these techniques applicable to other richer MAPF problems
as well. We also develop a mutex-based conflict-selection
strategy to further enhance the efficiency of search. In the ex-
perimental results, we show that our techniques significantly
improve MC-CBS, a state-of-the-art optimal LA-MAPF al-
gorithm, in terms of both success rate and runtime.

Preliminaries
In this section, we provide background material related to
MAPF, LA-MAPF, and CBS.

MAPF and LA-MAPF
The MAPF problem is defined by an undirected graph G =
(V,E) and a set of m agents {a1 . . . am}. Each agent ai
has a start vertex si ∈ V and a goal vertex gi ∈ V . In
each timestep, an agent either moves to a neighboring ver-
tex, waits at its current vertex, or terminates at its goal vertex
(that is, does not move anymore). A path of an agent is a se-
quence of actions that leads it from its start vertex to its goal
vertex and ends with a terminate action. The path cost of
a path is the number of timesteps from beginning to termi-
nation. A vertex conflict happens when two agents stay at
the same vertex simultaneously, and an edge conflict hap-
pens when two agents traverse the same edge in opposite
directions simultaneously. A solution is a set of conflict-free
paths of all agents. In this paper, we focus on minimizing the
Sum of path Costs (SoC), that is, the sum of the path costs
of the paths of all agents.

LA-MAPF generalizes MAPF to agents with different
shapes and sizes. In LA-MAPF, G is embedded in a d-
dimensional Euclidean space (usually d = 2, 3). Each agent
has a fixed shape around a reference point and can occupy



multiple vertices at the same time. A vertex conflict happens
when the shapes of two agents overlap at some timestep,
and an edge conflict happens when the shapes of two agents
overlap at some time when they move to their respective
next vertices. In this paper, we focus on 2-dimensional grids.
However, mutex propagation does not make any assumption
of the space embedding of G and hence can be applied in
other settings as well.

CBS
CBS (Sharon et al. 2015) is an optimal two-level MAPF al-
gorithm. On the high level, CBS performs a best-first search
on a Constraint Tree (CT). Each CT node contains (1) a set
of constraints and (2) a set of paths, one for each agent, that
satisfy all these constraints. The cost of a CT node is the SoC
of the paths. CBS starts with the root CT node, which has an
empty set of constraints and a path for each agent that has
the minimum path cost when ignoring conflicts. When ex-
panding a CT node, CBS returns the paths of it as a solution
if the paths are conflict-free. Otherwise, CBS picks a conflict
to resolve, splits the CT node into two child CT nodes, and
adds a constraint to each child CT node to prohibit either
one or the other of the two conflicting agents from using the
conflicting vertex or edge at the conflicting timestep. For the
newly constrained agent in each child CT node, CBS then
calls its low level to find an individual minimum-cost path,
that is, a path that has the minimum cost while satisfying all
constraints of the CT node but ignoring conflicts.

Multi-Decision Diagrams (MDDs): An MDD (Sharon
et al. 2013, 2015) MDD l

i for agent ai in a CT node is an
(l+ 1)-level directed acyclic graph that consists of all paths
of cost l for agent ai that satisfy all constraints of the CT
node. Cost l is usually set to the individual minimum cost
(that is, the cost of the individual minimum-cost path) of ai
but not necessarily so. Each MDD node n of MDD l

i at level
t correspond to a vertex of agent ai at timestep t in these
paths. We use n.loc and n.level to denote the correspond-
ing vertex and t, respectively. Slightly abusing the notation,
we use n ∈ MDD l

i to denote that n is an MDD node of
MDD l

i. At level 0, MDD l
i has a single source MDD node

corresponding to agent ai occupying its start vertex si at
timestep 0. At level l, MDD l

i has a single sink MDD node
corresponding to agent ai occupying its goal vertex gi at
timestep l.

Cardinal Conflicts: Two agents have a cardinal conflict
in a CT node iff there does not exist a pair of conflict-free
individual minimum-cost paths for both agents (that, by def-
inition, satisfy all constraints of the CT node). That is, the
SoC of an optimal solution for the two agents is larger than
the SoC of the individual minimum-cost paths of them. CBS
cannot resolve all cardinal conflicts efficiently since it needs
to check all combinations of paths whose SoC is less than
the SoC of an optimal solution, which can necessitate many
CT node expansions.

Mutex Propagation for LA-MAPF
In this section, we describe a mutex-based symmetry-
breaking technique for LA-MAPF. It first finds mutexes be-
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Figure 1: An example of a corridor conflict for two agents.
Both agents are of 2 × 2 square shapes, and we pick their
top-left corners as reference points. (a) shows the start ver-
tices s1 and s2 and the goal vertices g1 and g2 for these two
agents. (b) shows the numbers of CT node expansions of two
LA-MAPF algorithms for solving such problem instances as
the corridor length L increases.

tween MDDs of a pair of agents using mutex propagation,
and then it uses these mutexes to identify and automatically
resolve cardinal conflicts.

Figure 1a shows an example of cardinal conflicts in LA-
MAPF, which is similar to corridor symmetry in MAPF (Li
et al. 2020; Lam et al. 2019). In this example, both agents are
of size 2× 2, and there is a “corridor ” of width 3 and length
L = 3 in the middle of the map. In any optimal solution of
this problem instance, either a1 or a2 needs to wait for the
other agent to traverse the corridor. One needs to change the
existing rule-based technique for corridor symmetries care-
fully so that it can be used here. In MAPF, corridor symme-
tries consider only corridors of width 1, which can be easily
identified by finding vertices of degree 2. However, in LA-
MAPF, corridor symmetries need to consider corridors of
different widths depending on the sizes of the agents.

Mutex propagation takes the MDDs MDD li
i and MDD

lj
j

as inputs (where li and lj are determined by the algorithm
and are not less than the individual minimum costs of agents
ai and aj , respectively). For ease of presentation, we assume
that li ≤ lj . We first find initial mutexes, which correspond
to vertex and edge conflicts in LA-MAPF:

1. Two MDD nodes ni ∈ MDD li
i and nj ∈ MDD li

i are
initial mutex iff ni.level = nj .level and agents ai and aj
have a vertex conflict when they are at ni.loc and nj .loc,
respectively, simultaneously.

2. Two MDD edges ei = ⟨ni, n
′
i⟩ and ej = ⟨nj , n

′
j⟩ with

ni, n
′
i ∈ MDD li

i and nj , n
′
j ∈ MDD

lj
j are initial mutex

iff ni.level = nj .level and agents ai and aj have an edge
conflict when agent ai moves from ni.loc to n′

i.loc and
agent aj moves from nj .loc to n′

j .loc simultaneously.

Propagated mutexes can be found using the following
mutex-propagation rules:

1. Forward propagation for MDD nodes: Two MDD nodes
ni and nj are propagated mutex iff neither ni.level nor
nj .level is 0 and any MDD edge that points to ni is either
initial mutex or propagated mutex with any MDD edge
that points to nj .
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Figure 2: MDDs MDD9
1 and MDD9

2 for the problem in-
stance in Figure 1a along with the mutexes between their
MDD nodes. The labels inside the MDD nodes are the ver-
tices of the agents. For ease of presentation, edge mutexes
are not shown, and, for any pair of MDD nodes that are
both initial and propagated mutex, only the initial mutex is
shown. MDD nodes filled with color correspond to the con-
straint sets generated by the mutex-based technique.

2. Forward propagation for MDD edges: Two MDD edges
⟨ni, n

′
i⟩ and ⟨nj , n

′
j⟩ are propagated mutex iff MDD

nodes ni and nj are either initial mutex or propagated
mutex.

Two MDD nodes or two MDD edges are mutex iff they are
initial mutex or propagated mutex. All mutexes between two
MDDs can be found in time polynomial in the numbers of
MDD nodes. Our definition of initial mutexes slightly differs
from the one in (Zhang et al. 2020), which is specifically
defined for vertex and edge conflicts in point-agent MAPF.
Instead, we define it for general vertex and edge conflicts.
By doing so, all theoretical properties of mutexes in (Zhang
et al. 2020) are maintained because they are based on the
conceptual equivalence of initial mutexes and conflicts.

Mutexes do not capture vertex conflicts that happen after
agent ai terminates because they are not propagated beyond
level li. To handle cardinal conflicts caused by such vertex
conflicts, Zhang et al. (2020) divided cardinal conflicts into
two types and proposed an algorithm to identify and resolve
each type of cardinal conflicts. To resolve a cardinal conflict
between agents ai and aj , for each one of the conflicting
agents, the algorithm identifies a set of MDD nodes in its
MDD and converts each MDD node n into a vertex con-
straint on n.loc at timestep n.level. This results in two sets

of constraints Ci and Cj , one for each agent, that are used
for CBS splitting. The two types of cardinal conflicts and
their corresponding algorithms are:
1. Pre-goal cardinal Conflicts (PCs): CBS identifies a PC

between agent ai and aj iff the sink MDD node of
MDD li

i is mutex with all MDD nodes of MDD
lj
j at level

li. To resolve a PC, CBS uses two constraint sets Ci and
Cj for agents ai and aj , respectively. Constraint set Ci

contains the vertex constraints for every MDD node of
MDD li

i that is mutex with all MDD nodes of MDD
lj
j at

the same level. Similarly, constraint set Cj contains the
vertex constraints for every MDD node of MDD

lj
j that is

mutex with all MDD nodes of MDD li
i at the same level.

2. After-goal cardinal Conflicts (ACs): CBS identifies an
AC between agents ai and aj iff, for any MDD node
n ∈ MDD

lj
j at level li that is not mutex with the sink

node of MDD li
i , every path from n to the sink node of

MDD
lj
j traverses an MDD node n′ such that agents ai

and aj have a vertex conflict when they are at vertices
gi and n′.loc simultaneously, respectively. To resolve an
AC, constraint set Ci contains a constraint that forces
the path cost of agent ai to be larger than li. Constraint
set Cj contains the constraints for all MDD nodes of
MDD

lj
j at level li that are mutex with the sink MDD

node of MDD li
i and the constraints for all MDD nodes

n′ ∈ MDD
lj
j such that n′.level > li and agents ai and

aj have a vertex conflict when they are at vertices gi and
n′.loc simultaneously, respectively.

Example 1. Figure 2 shows MDDs MDD9
1 and MDD9

2 for
the problem instance in Figure 1a. Green dashed lines indi-
cate initial mutexes, which correspond to conflicts between
agents a1 and a2, and red dashed lines indicate propagated
mutexes. A PC can be identified between these two MDDs
because the sink node of MDD9

1 is mutex with all MDD
nodes of MDD9

2 at level 9, that is, the sink node MDD9
2. The

MDD nodes that are used to generate the constraint sets are
filled with color.

The mutex-based technique can generate different con-
straint sets for different choices of li and lj as long as a car-
dinal conflict can be identified using MDD li

i and MDD
lj
j .

Intuitively, larger values of li and lj result in “stronger” con-
straints for CBS splitting. For example, the constraint sets in
Example 1 will force agent a1 to take a path with a cost of
10 in one CT node and agent a2 to take a path with a cost of
10 in the other CT node, which is insufficient to resolve all
conflicts between the agents. Zhang et al. (2020) proposed
a greedy approach for determining the values of li and lj ,
which we also use in our implementation. Due to the space
limit, we skip the details of this approach.

For a cardinal conflict between agents ai and aj , let
MDD li

i and MDD
lj
j denote the MDDs used for generating

the constraint sets, l∗i and l∗j denote the individual minimum
cost of agents ai and aj , and δi and δj denote li − l∗i and
lj − l∗j , respectively. The larger δi and δj , the more the path
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Figure 3: Success rates of various LA-MAPF solvers on each map with different numbers of agents.

costs of agents ai and aj need to increase in order to resolve
the conflict. In some sense, larger values of δi and δj indicate
that the conflict is more difficult to resolve and might be bet-
ter resolved first. This motivates us to develop a new conflict
selection rule based on δi and δj : When multiple cardinal
conflicts are found in one CT node, we prefer to resolve the
cardinal conflict with the largest min(δi, δj) value next.

Experimental Results
In this section, we compare different variants of MC-
CBS, a state-of-the-art CBS-based solver for LA-MAPF.
These variants are MC-CBS, MC-CBS-M, and MC-CBS-
MS, where M denotes mutex-based symmetry breaking and
S denotes the new conflict-selection rule. All MAPF solvers
share the same codebase as much as possible. We chose four
representative maps from the MAPF benchmark (Stern et al.
2019),1 which are empty-48-48, random-64-64-10, lak303d,
and maze-128-128-10. For each map, we generated 25 in-
stances with randomly selected start and goal vertices for
each agent. All agents are of square shape and size, varying
from 2× 2 to 3× 3. We ran all experiments on a MacBook
Pro with 32GB of memory. The time limit for solving each
LA-MAPF instance was five minutes.

Figure 3 shows the success rate, that is, the percentage
of LA-MAPF instances that an algorithm solves within the
time limit, for each map and different numbers of agents. In
all four maps, the addition of mutex-based symmetry break-
ing improves the success rate. The improvement is large for
empty-48-48. For instance, when the number of agents is
20, MC-CBS only solves 25% of the instances while both
MC-CBS-M and MC-CBS-MS solve more than 75% of the
instances. The new conflict-selection rule also slightly im-
proves the success rate for empty-48-48, random-64-64-10,
and lak303d.

Figure 4 shows the individual runtimes (in seconds) of
MC-CBS and MC-CBS-MS for all maps and all numbers
of agents. We use different colors to distinguish instances
on different maps. There is no instance that MC-CBS solves
but MC-CBS-MS does not solve within the time limit. For
instances that both algorithms solve within 1 second, MC-
CBS-MS is often slightly slower than MC-CBS due to the
computational overhead of mutex reasoning. For more dif-
ficult instances, MC-CBS-MS solves most instances much

1https://movingai.com/benchmarks/mapf.html
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Figure 4: Runtimes of MC-CBS and MC-CBS-MS on all
LA-MAPF instances. Each dot corresponds to an LA-MAPF
instance, and its x-coordinate and y-coordinate correspond
to the runtime (in seconds) of MC-CBS and MC-CBS-MS,
respectively.

faster than MC-CBS. The improvement is large on some in-
stances of empty-48-48, where the speedups are over 125×.

Conclusion
In this paper, we showed that mutex-based symmetry-
breaking techniques can be easily generalized to richer
MAPF problems than the classical one, as we demonstrated
for LA-MAPF. We also presented a mutex-based conflict-
selection strategy. Our experimental results showed that our
techniques significantly improve MC-CBS, a state-of-the-art
optimal LA-MAPF algorithm, in terms of both success rate
and runtime.

While our mutex-based technique can handle generalized
vertex and edge conflicts, it still requires mutexes to connect
pairs of MDD nodes or edges at only the same level and thus
might not apply to problems like k-robust MAPF (Atzmon
et al. 2018), where a conflict happens if an agent occupies a
vertex that was occupied by another agent at most k timestep
ago. Such conflicts can be modeled using a mutex between
two MDD nodes on different levels. An interesting direction
for future work is therefore to generalize mutex propagation
and mutex-based symmetry-breaking techniques to mutexes
between MDD nodes on different levels.
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