
Learning a Priority Ordering for Prioritized Planning
in Multi-Agent Path Finding

Shuyang Zhang, Jiaoyang Li, Taoan Huang, Sven Koenig, and Bistra Dilkina
University of Southern California, Los Angeles, USA

{zhan270, jiaoyanl, taoanhua, skoenig, dilkina}@usc.edu

Abstract

Prioritized Planning (PP) is a fast and popular framework for
solving Multi-Agent Path Finding, but its solution quality de-
pends heavily on the predetermined priority ordering of the
agents. Current PP algorithms use either greedy policies or
random assignments to determine a total priority ordering, but
none of them dominates the others in terms of the success rate
and solution quality (measured by the sum-of-costs). We pro-
pose a machine-learning (ML) framework to learn a good pri-
ority ordering for PP. We develop two models, namely ML-T,
which is trained on a total priority ordering, and ML-P, which
is trained on a partial priority ordering. We propose to boost
the effectiveness of PP by further applying stochastic ranking
and random restarts. The results show that our ML-guided
PP algorithms outperform the existing PP algorithms in suc-
cess rate, runtime, and solution quality on small maps in most
cases and are competitive with them on large maps despite the
difficulty of collecting training data on these maps.

1 Introduction
Multi-Agent Path Finding (MAPF) is the problem of find-
ing a set of collision-free paths for a group of agents in
a shared environment. The objective of MAPF is to min-
imize the sum-of-costs (the sum of the arrival times of
all agents at their goal locations, also known as flowtime)
or the makespan (the largest arrival time of any agent at
its goal location). Finding an optimal solution for MAPF
is NP-hard (Yu and LaValle 2013; Surynek 2010). MAPF
has many real-world applications in warehouse manage-
ment (Wurman, D’Andrea, and Mountz 2008), airport sur-
face operations (Morris et al. 2016), autonomous vehi-
cles (Veloso et al. 2015), video games (Ma et al. 2017), and
other multi-agent systems.

Prioritized planning (PP) (Silver 2005) is one of the
fastest algorithms for solving MAPF suboptimally. It is
based on a simple planning scheme (Erdmann and Lozano-
Perez 1987): We assign each agent a unique priority and
compute, in descending priority ordering, each agent’s short-
est path that avoids collisions with both static obstacles and
the already-planned agents (moving obstacles). Because of
its computational efficiency, scalability, and simplicity, PP
remains the most commonly-adopted MAPF algorithm in

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Normalized sum-of-costs (= the ratio of the sum-
of-costs of the solution over the sum of the lengths of the
shortest paths of all agents) of 100 PP runs with different
random priority orderings on MAPF instance “room-32-32-
4-random-1.scen” from (Stern et al. 2019) with 20 agents,
sorted by their normalized sums-of-costs. PP runs that fail
to find any solutions are shown on top of the plot.

practice. However, its solution quality is sensitive to the
predetermined total priority ordering. Good priority order-
ings can yield (near-)optimal solutions, whereas bad prior-
ity orderings can lead to solutions with large sums-of-costs
or even failures to find any solution for solvable MAPF in-
stances, as shown in Figure 1.

Existing PP algorithms use either randomized assign-
ments or greedy heuristics to determine the priority ordering,
such as the query-distance heuristic (van den Berg and Over-
mars 2005), least-option heuristic (Wang et al. 2019; Wu,
Bhattacharya, and Prorok 2020), and start-and-goal-conflict
heuristic (Buckley 1989; Li et al. 2019). However, these
hand-crafted heuristics have been developed in the context
of specific usage scenarios, and none of them dominates the
others in all cases in terms of the success rate and solution
quality (measured by the sum-of-costs).

To fill the gap, we propose a Machine-Learning (ML)
framework to learn good priority orderings in this paper. In
the first phase, we extract features from a set of MAPF in-
stances. We then run PP for a large number of times with dif-
ferent priority orderings and generate labels derived from the
priority orderings that yield the best solutions. In the second

phase, we use supervised learning to obtain a ranking func-
tion that produces a priority score for each agent. We pro-
pose two models, namely ML-T, which is trained on a total
priority ordering, and ML-P, which is trained on a partial pri-
ority ordering. In the last phase, we use the learned ranking
functions to find total priority orderings for unseen MAPF
instances and compare the results with those of the bench-
mark PP algorithms. Besides exploring deterministic rank-
ing, we also apply stochastic ranking and random restarts
to all PP algorithms in our portfolio. Our results show that
our ML-guided PP algorithms significantly outperform the
existing PP algorithms in success rate, runtime, and sum-of-
costs in almost all cases on small maps, especially in “hard”
scenarios with large numbers of agents where a solution is
extremely difficult to find with existing PP algorithms. Our
ML-guided PP algorithms are also competitive with the ex-
isting PP algorithms on large maps despite the difficulty in
collecting training data on these maps.

2 Problem Definition
The Multi-Agent Path Finding (MAPF) problem is to find
a set of conflict-free paths for a set of agents A =
{a1, a2, ..., an} on an unweighted undirected graph G =
(V,E). Each agent has a start location si ∈ V and a goal
location gi ∈ V . Time is discretized into time steps. Agents
can either move to adjacent locations or wait at their current
locations at each time step. We consider two types of con-
flicts, namely vertex conflicts, that occur when two agents
are at the same location at the same time step, and edge con-
flicts, that occur when two agents cross the same edge in
opposite directions at the same time step. The cost of agent
ai (or, synonymously, the path length of ai) is the number
of time steps needed for ai to complete its path from si to
gi and remain motionless at gi. The sum-of-costs is the sum
of the costs of all agents. A solution is a set of conflict-free
paths that move all agents from their start locations to their
goal locations. Our objective is to find a solution that min-
imizes the sum-of-costs. In this paper, we assume that G is
always a four-neighbor grid, which we also refer to as a map.
Definition 2.1 (Graph distance). The graph distance
dist(u, v) between two locations v ∈ V and u ∈ V is the
length of a shortest path that connects both locations.
Definition 2.2 (MDD). An MDD (Sharon et al. 2013)
MDD i for agent ai is a directed acyclic multi-level graph
consisting of all shortest paths from location si to location
gi. Level t of MDD i contains all possible locations that ai
can occupy at time step t along one of its shortest paths. In
particular, levels 0 and dist(si, gi) (i.e., the first and last lev-
els) contain only si and gi, respectively. The width of a level
is the number of locations in that level.
Definition 2.3 (Cardinal conflicts). A vertex (edge) conflict
between agents ai and aj is cardinal iff the contested vertex
(edge) is the only vertex (edge) in the MDDs of both agents
at some level (between two consecutive levels).

3 Background and Related Work
In this section, we first introduce prioritized planning, its
challenges, and the commonly-used prioritization rules. We

then briefly introduce some recent work on ML for MAPF.

3.1 Prioritized Planning
Definition 3.1 (Priority ordering). A priority ordering ≺≺≺ is
a strict partial order on A: ai ≺ aj iff agent ai has higher
priority than agent aj (Ma et al. 2019). ≺≺≺ is a total priority
ordering iff any two agents in A are comparable (i.e., either
ai ≺ aj or aj ≺ ai for all ai ̸= aj) and a partial priority
ordering otherwise.

Prioritized Planning (PP) (Erdmann and Lozano-Perez
1987) is a decoupled approach to solving MAPF. In PP, we
arrange all agents into a predefined total priority ordering.
Then, we plan paths for all agent one by one in descending
order according to the priority ordering. The path of each
agent is a shortest path that has no conflicts with the paths of
all higher-priority agents. So, instead of planning paths for
all agents at once, PP decouples the planning process and
plans for the agents sequentially.

PP does not guarantee completeness or optimality, but it
is popular because of its efficiency and simplicity. A key
consideration in PP is how to determine the predefined total
priority ordering. It is typically determined either randomly
or via manually designed heuristics.

Query-distance heuristic. Van den Berg and Overmars
(2005) proposed the query-distance heuristic, which mea-
sures the start-goal graph distance dist(si, gi) of each agent
ai and assigns higher priority to agents with longer dis-
tances. The motivation behind this heuristic was to priori-
tize agents that need to travel longer distances and thus min-
imize the makespan (i.e., the largest cost of all agents). An
opposite version of the query-distance heuristic, which as-
signs higher priority to agents with shorter start-goal graph
distances, has been used in (Ma et al. 2019).

Least-option heuristic. Building on the idea behind the
most-constrained-variable heuristic for solving constraint
satisfaction problems, Wang et al. (2019) and Wu, Bhat-
tacharya, and Prorok (2020) proposed the least-option
heuristic, which assigns higher priority to agents with fewer
paths options, where the number of path options for an agent
is defined as the number of conflict-free paths within given
time steps in (Wang et al. 2019) and the number of homology
classes of paths in (Wu, Bhattacharya, and Prorok 2020).

Start-and-goal-conflict heuristic. Buckley (1989) pro-
posed prioritization rules that consider the potential conflicts
at the start and goal locations of the agents. Intuitively, if the
shortest path of agent ai visits the start location of another
agent aj , then aj needs to be planned prior to ai; if the short-
est path of agent ai visits the goal location of another agent
aj , then ai needs to be planned prior to aj . This heuristic
tends to reduce the runtime of PP (Buckley 1989) and in-
crease its success rate (van den Berg et al. 2009).

Random restarts. When the priority ordering is assigned
randomly, researchers often apply random restarts to im-
prove the performance of PP (Bennewitz, Burgard, and
Thrun 2002). When PP with a particular priority ordering
fails to find a solution for a MAPF instance, we can “restart”
it with a new randomized priority ordering.

3.2 Related Work on ML for MAPF
Recently, ML techniques have been applied to MAPF.
Kaduri, Boyarski, and Stern (2020), Ren et al. (2021), and
Ewing et al. (2022) proposed algorithm selection models
that learn to select the fastest algorithm to solve MAPF
problems optimally. Huang, Dilkina, and Koenig (2021a,b)
and Huang et al. (2022) applied ML techniques to speed
up MAPF algorithms such as Conflict-Based Search and its
variants. We leverage their insights into feature crafting and
ML methodologies and propose a data-driven ML frame-
work for learning priority orderings for PP. Compared to ML
frameworks that use deep learning, our approach is simple in
both structure and implementation and requires only a small
to medium training dataset to obtain good test results.

4 Machine-Learning Methodology
In this section, we introduce our supervised learning frame-
work to learn a priority ordering for PP to solve MAPF. The
idea is to train the ML model on hand-crafted features and
labels such that it produces a score for each agent. We then
use this score to rank the agents to produce a total priority
ordering. To begin with, we define some terminology used
in our subsequent explanation.
Definition 4.1 (Example). An example DI is a single data
point derived from a MAPF instance I that consists of a fea-
ture vector for each agent and a label.
Definition 4.2 (Dataset). A dataset is a set of examples.

Our ML pipeline consists of three phases:
1. Data collection: We obtain two sets of MAPF instances,

namely training MAPF instances ITrain and test MAPF
instances ITest, and a training dataset DTrain = {DI | I ∈
ITrain}. See Section 5.

2. Model learning: We use DTrain to train a ranking function
that produces a score for each agent such that the prior-
ity orderings derived from the scores are as “similar” to
the priority orderings derived from the labels in DTrain as
possible. See Section 6.

3. ML-guided search: We use the learned ranking function
to generate total priority orderings for PP to solve MAPF
instances in ITest. See Section 7.

5 Data Collection
The first task in our ML pipeline is to generate the training
and test datasets. We collect two sets of MAPF instances,
namely training MAPF instances ITrain and test MAPF in-
stances ITest, on the same map with the same number of
agents. For each MAPF instance I ∈ ITrain, we generate
an example DI that consists of (i) a p-dimensional feature
vector Φi

I for each agent ai ∈ A that describes agent ai with
p features and (ii) a total/partial priority ordering≺≺≺I , which
is used to compute the label for the ML models.

5.1 Feature Vector
We collect a p-dimensional feature vector Φi

I for each agent
ai and each example I ∈ ITrain. The p = 26 features in
our implementation are summarized in Table 1 and can be
classified into four categories.

Start-goal distances. Motivated by the query-distance
heuristic (van den Berg and Overmars 2005), we design 4
features about the graph and Manhattan distances between
the start and goal locations of ai (Feature 1). We also gen-
eralize this idea to looking at the graph distances between
the start/goal locations of ai and those of the other agents
(Features 2 and 3).

MDD. Motivated by the least-option heuristic, we design
5 features about MDD i (Features 4-6) because MDD i cap-
tures information about the path options of ai.

Start and goal locations. Motivated by the start-and-goal-
conflict heuristic, we design 4 features about the potential
conflicts at the start or goal locations of the other agents that
ai might be involved in, namely potential conflicts between
ai and another agent aj when ai is at its start or goal location
and aj follows (one of) its shortest paths (Features 7 and 8)
or when aj is at its start or goal location and ai follows (one
of) its shortest paths (Features 9 and 10).

Conflicts. We finally design 7 features about conflicts of
different types (Feature 11) and potential conflicts (Feature
12) ai might be involved in. In particular, Feature 11 counts
the number of each type of conflicts that ai can be involved
in if all agents follow their shortest paths. Feature 12 counts
the number of potential vertex conflicts that ai can be in-
volved in if all agents follow their shortest paths but wait
for some time steps along their paths. We reason about the
conflicts using these two methods because they can be easily
computed by reasoning about the MDDs of the agents.

Normalization. We normalize the value of each feature
between 0 and 1 across all agents. Since all our features have
non-negative values by construction, we normalize them us-
ing a simple Min-Max normalization method.

5.2 Priority Ordering
To obtain the priority ordering ≺≺≺I for a given MAPF in-
stance I , we first run PP repeatedly for x times with differ-
ent total priority orderings (e.g., randomly generated total
priority orderings) on MAPF instance I . We then use two
different methods to construct ≺≺≺I : One method is based on
a total priority ordering, and the other one is based on a par-
tial priority ordering.

In the first method, we set≺≺≺I to the total priority ordering
that generates the solution with the smallest sum-of-costs
among the x runs. This method is simple and straightfor-
ward but has two drawbacks. First, the total priority order-
ing may be arbitrary in places. For example, if agents ai and
aj are located far away from each other and do not collide
with each other, then it does not matter which agent has the
higher priority. Second, the total priority ordering is based
on a single example, which may not be sufficiently robust.

In the second method, we therefore collect the k ≥ 1 sam-
ples that result in the smallest sums-of-costs and generate
a partial priority ordering by imposing an ordering on two
agents only if the reverse ordering may change the sums-of-
costs substantially. The method works as follows:

For each PP run p = 1, ..., x, we start with an empty par-
tial priority ordering ≺≺≺p

I . Each iteration of PP calls (space-

Index Feature description Count
1 Graph and Manhattan distances between si and gi: their respective values, absolute difference, and

the ratio of the graph distance over the Manhattan distance
4

2 Graph distance between si and the start locations of the other agents: their max., min., and mean 3
3 Graph distance between gi and the goal locations of the other agents: their max., min., and mean 3
4 Sum of the widths of all levels of MDD i 1
5 Width of each level (excluding the first and the last levels) of MDD i: their max., min., and mean 3
6 Number of unit-width levels of MDD i 1
7 Number of the other agents whose MDDs contain si 1
8 Number of the other agents whose MDDs contain gi 1
9 Number of the other agents whose start locations are in MDD i 1

10 Number of the other agents whose goal locations are in MDD i 1
11 Number of vertex, edge, and cardinal conflicts between any shortest path of ai and any shortest path

of one of the other agents: counted by agent pair or counted by raw conflict count
6

12 Number of locations in MDD i that are also in the MDD of at least one other agent 1

Table 1: p = 26 features for agent ai. Column “Count” reports the numbers of features contributed by the corresponding entries.

time) A* (Silver 2005) to plan a shortest path for a sin-
gle agent ai that avoids conflicts with the already-planned
paths. When this A* search generates an A* node n with
an f -value of fn that moves ai from one location to an-
other, it checks if this move action leads to a conflict with an
already-planned path, say, that of agent aj , and prunes node
n if so. We record such pruned nodes, i.e, we record the pair
(aj , fn). When the A* search terminates and returns a path
of length li for ai, we collect the set of agents AH in the
recorded pairs whose corresponding fn values are smaller
than li and add aj ≺ ai for all aj ∈ AH to ≺≺≺p

I , for the fol-
lowing reason: If any agent in AH had lower priority than
ai, then A* might find a path of length within [fn, li) for ai,
i.e., it might find a shorter path than the current one. In con-
trast, even if all agents not in AH had lower priority than ai,
A* still cannot find a shorter path.

When we select the top k samples, we collect the associ-
ated partial priority orderings≺≺≺p

I for p = 1, . . . , k and com-
bine them into a joint partial priority ordering ≺≺≺I . To do so,
we first find all pairs of comparable agents in each ≺≺≺p

I .1 We
then sort the agent pairs in descending order of their occur-
rences in the top k samples (ai ≺ aj and aj ≺ ai are treated
as two different agent pairs) and add them one by one to≺≺≺I

whenever possible. That is, if the agent pair is ai ≺ aj , we
add it to ≺≺≺I iff agents ai and aj are not comparable in ≺≺≺I .
We also record the occurrences and use #(ai ≺ aj) to rep-
resent how often ai ≺ aj occurs in the k priority orderings.

6 Model Learning

We learn a linear ranking function with parameters w ∈ Rp

f : Rp → R : f(Φi
I) = wTΦi

I

1Specifically, we convert ≺≺≺p
I to a directed acyclic graph Hp

I ,
where node i represents agent ai and each directed edge i → j
represents ai ≺p

I aj . We run the Floyd-Warshall algorithm on Hp
I

to find all connected agent pairs.

that minimizes the loss function

L(w) =
∑

I∈ITrain

l(yI , ŷI) +
C

2
||w||22.

Here, yI is derived from≺≺≺I that represents the ground-truth
priority ordering (details are provided below), and ŷI is a
n-dimensional vector of the predicted scores, i.e., ŷI(ai) =
f(Φi

I), that represents the predicted priority ordering. l(·, ·)
is a loss function that measures the difference between the
ground-truth priority ordering and the predicted priority or-
dering (details are provided below), and C > 0 is a regular-
ization parameter.

ML-T. The first model, ML-T, learns a form of the total
priority ordering ≺≺≺I generated by the first method in Sec-
tion 5.2. Since ≺≺≺I is noisy, we group the agents into m pri-
ority groups (where m ∈ N is a hyper-parameter) by setting
yI(ai) = ⌊ri/m⌋, where ri represents that agent ai has the
ri-th lowest priority among all agents. That is, agents with
larger yI values are in higher priority groups, and agents
with the same yI value are in the same priority group. Simi-
lar labeling methods are used in (Khalil et al. 2016; Huang,
Dilkina, and Koenig 2021b). The loss function l(yI , ŷI) is
defined to be the fraction of discordant pairs over all pairs of
agents in different priority groups:

l(yI , ŷI) =

|{(ai, aj) ∈ A2 : yI(ai) > yI(aj) ∧ ŷI(ai) < ŷI(aj)}|
|{(ai, aj) ∈ A2 : yI(ai) > yI(aj)}|

.

ML-P. The second model, ML-P, learns a pairwise partial
priority ordering generated by the second method in Sec-
tion 5.2. Here, we do not explicitly define yI . Instead, we
define the loss function l(yI , ŷI) directly to be the fraction
of the sum of the occurrence of discordant agent pairs in≺≺≺I

over the sum of the occurrence of agent pairs in ≺≺≺I :

l(yI , ŷI) =

∑
(ai,aj)∈A2 : ai≺Iaj∧ŷI(ai)<ŷI(aj)

#(ai ≺ aj)∑
(ai,aj)∈A2 : ai≺Iaj

#(ai ≺ aj)
.

7 ML-Guided Search
After data collection and model learning, we apply the
learned ranking function f to the feature vectors for each
test MAPF instance I ∈ ITest. Based on the predicted scores
ŷI : A → Rn returned by f , we propose two different meth-
ods to produce a total priority ordering.

Deterministic ranking. We rank the agents by their pre-
dicted scores, namely ai ≺ aj iff ŷI(ai) > ŷI(aj).

Stochastic ranking. We use the predicted scores to pro-
duce a probability distribution and generate a total prior-
ity ordering sequentially from agents with high priority to
agents with low priority. Specifically, we normalize the pre-
dicted scores ŷI using the softmax function

σ : Rn → [0, 1]n : σ(z) =
(eβz1 , . . . , eβzn)∑n

j=1 e
βzj

(1)

(β ∈ R+ is a hyper-parameter), where we set zi = ŷI(ai).
We then repeatedly assign the next highest priority to an
agent that is selected with a probability proportional to its
normalized predicted score (where, of course, every agent
can be selected only once). Agents with higher normalized
scores have higher probabilities to be selected earlier and
thus assigned higher priorities. This adds randomness to the
total priority orderings and allows us to leverage the random
restart scheme when experimenting with ML-guided PP.

8 Experimentation
We use two open-source software packages to build our two
ML models, namely SVMrank (Joachims 2006), which im-
plements a Support Vector Machine for ordinal classification
and regression, for building ML-T and LIBLINEAR (Fan
et al. 2008), which implements a Support Vector Machine
for large-scale linear classification, for building ML-P. We
compare our ML-guided PP algorithms against three base-
line PP algorithms: (1) LH, a query-distance heuristic where
agents with longer start-goal graph distances have higher
priority (van den Berg and Overmars 2005); (2) SH, a query-
distance heuristic where agents with shorter start-goal graph
distances have higher priority (Ma et al. 2019); and (3)
RND, a heuristic that generates a random total priority or-
dering (Bennewitz, Burgard, and Thrun 2002). We imple-
ment all algorithms in C++ with the same PP code base
and run experiments on Ubuntu 20.04 LTS on an Intel Xeon
8175M processor with a memory limit of 8 GB.

Maps. We use a set of six maps M, illustrated in Table 3,
with different sizes and structures from the MAPF bench-
mark suite (Stern et al. 2019): (1) the random map “random-
32-32-20” of size 32× 32 with 20% randomly blocked cells
and |V | = 819, (2) the room map “room-32-32-4” of size
32×32 with 64 square rooms connected by single-cell doors
and |V | = 682, (3) the maze map “maze-32-32-2” of size
32× 32 with two-cell-wide corridors and |V | = 666, (4) the
warehouse map “warehouse-10-20-10-2-1” of size 161× 63
with |V | = 5,699, (5) the first game map “lak303d” of size
194× 194 with |V | = 14,784, and (6) the second game map
“ost003d” of size 194× 194 with |V | = 13,214. We refer to

the first four maps as small maps and to the last two as large
maps.

Training and test MAPF instances. We use 25 random
scenarios from the MAPF benchmark suite for each map. A
scenario is a list of min{0.5|V |, 1,000} randomly created
pairs of start and goal locations. Following the literature,
given a map M ∈ M and a number of agents n, we gen-
erate 25 test MAPF instances I(M)

Test , one from each scenario,
by using the first n pairs of start and goal locations. In or-
der to generate training MAPF instances that follow a simi-
lar distribution as the test MAPF instances, given a scenario
with a map M ∈ M and a number of agents n, we generate
a training MAPF instance I ∈ I(M)

Train by randomly select-
ing n start locations from all start locations in the scenario,
randomly selecting n goal locations from all goal locations
in the scenario, and then randomly combining them into n
pairs of start and goal locations. For ML-T, we generate 99
training MAPF instances from each of the 25 scenarios, so
|I(M)

Train | = 2,475. For ML-P, we generate one training MAPF
instance from each scenario since the training loss converges
already for a small training dataset, so |I(M)

Train | = 25.

Training datasets. We run PP x = 100 times, once with
LH, once with SH, and 98 times with RND, to solve each
MAPF instance I ∈ I(M)

Train . We pick the PP run with the least
sums-of-costs for ML-T and the top k = 5 PP runs with
the least sums-of-costs for ML-P to generate the training ex-
ample DI . However, when we use small maps with large
numbers of agents n, most of the 100 PP runs fail to find any
solutions. We show in Sections 8.1 and 8.2 that our ML mod-
els often have higher success rates than LH, SH, and RND
on small maps with small numbers of agents n. Therefore,
when the success rate of the 100 PP runs is less than 5% for
the given MAPF instances (i.e., on the random, room, and
maze maps with n ≥ 200, n ≥ 125, and n ≥ 90, respec-
tively), we replace 10 of the 98 RND runs with ML-guided
PP trained on a smaller number of agents on the same map
(i.e., the number of agents shown on the previous row of the
row in Tables 2 and 3 that corresponds to the map and the
number of agents of the given MAPF instance). Specifically,
we run ML-guided PP with random restarts with a runtime
limit of 3 seconds (i.e., repeatedly run PP using the stochas-
tic ranking method until a solution is found or the runtime
limit is reached) in each run and always use the same ML
model for training and testing (i.e., train ML-T with datasets
partially generated by ML-T and train ML-P with datasets
partially generated by ML-P). This is effective in gathering
training data for large numbers of agents on all small maps
except for the warehouse map, for which we did not use ML-
guided PP to generate training datasets (because it did not
result in higher success rates).

Training hyper-parameters. We varied the group size
m ∈ {1, 5, 10} for ML-T and picked m = 5 as it leads
to the best results. We varied the regularization parameter
C ∈ {0.1, 1, 10, 20, 100} and picked C = 20 to train an
SVMrank for model ML-T since there was no significant
difference on the test results. We used the built-in cross-

M
ap n

Success rate (%) Solution rank
LH SH RND ML-T ML-P LH SH RND ML-T ML-P

ra
nd

om

50 96 16 76 84 56 2.00 2.72 1.24 1.52 1.24
100 100 20 60 32 24 1.20 1.68 1.16 1.32 1.68
150 68 4 20 64 8 0.72 1.44 1.28 0.68 1.40
200 24 0 0 32 24 0.44 0.80 0.80 0.28 0.44
250 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00

ro
om

50 88 12 52 76 16 1.48 2.00 1.28 0.72 1.72
75 92 0 8 0 44 0.28 1.44 1.36 1.44 0.72

100 60 0 0 56 60 0.92 1.76 1.76 0.64 0.56
125 24 0 0 16 20 0.28 0.60 0.60 0.44 0.32
150 4 0 0 0 0 0.00 0.04 0.04 0.04 0.04

m
az

e

50 84 0 12 76 68 1.32 2.40 2.12 0.68 0.96
70 76 0 0 84 88 0.84 2.48 2.48 0.88 0.88
90 64 0 0 52 80 0.96 1.96 1.96 0.84 0.68

110 44 0 0 32 44 0.56 1.20 1.20 0.52 0.56
130 16 0 0 8 16 0.20 0.40 0.40 0.32 0.20

w
ar

eh
ou

se

100 92 32 80 92 80 2.72 2.64 1.40 1.96 0.64
200 80 28 56 36 60 1.80 1.36 1.56 1.44 0.88
300 52 16 12 24 20 0.72 0.68 1.04 0.68 0.84
400 32 4 8 12 24 0.44 0.64 0.64 0.60 0.44
500 12 0 4 0 0 0.04 0.16 0.08 0.16 0.16

la
k3

03
d

300 100 28 96 96 76 2.64 2.64 1.96 1.16 1.24
400 100 36 88 88 72 2.84 2.24 1.64 1.52 1.08
500 100 44 88 84 80 2.76 1.76 1.48 2.24 0.96
600 88 8 36 80 12 1.24 1.84 1.36 0.72 1.80
700 16 0 0 68 0 0.64 0.84 0.84 0.16 0.84

os
t0

03
d

300 100 28 96 92 80 2.72 2.68 1.20 2.04 1.04
400 88 32 92 84 92 2.84 2.44 2.04 1.04 0.96
500 96 28 84 96 64 2.32 2.40 1.52 1.76 1.20
600 92 16 60 84 40 1.76 2.16 1.28 1.32 1.44
700 72 8 40 68 12 1.08 1.60 0.88 0.88 1.64

Table 2: Success rate and solution rank for deterministic
ranking. The best results achieved among all algorithms are
shown in bold. The results are obtained by training and test-
ing on the same map with the same number of agents n,
except for maps lak303d and ost003d with n > 500, where
the results are obtained by training on the same map with
n = 500.

validation function in LIBLINEAR to obtain the value of
C = 128 to train an SVM for model ML-P (Fan et al. 2008).

Testing setups. We always train and test on the same map.
For small maps, we train and test with the same number of
agents n. For large maps, we are only able to gather train-
ing datasets for MAPF instances with n ≤ 500 because the
runtime for a single PP run with a larger n is too high. We
therefore train and test with the same number of agents when
n ≤ 500 and use the ML models trained on MAPF instances
with n = 500 to test on MAPF instances with n > 500.
The runtime limit for testing is set to 1 minute for small
maps and 10 minutes for large maps. We pre-compute the
graph distances from each goal location to all locations on
the map and use them as the admissible heuristics for the
(space-time) A* search of PP for all the algorithms.

Metrics. We evaluate the algorithms with four metrics.
Success rate is the percentage of solved test MAPF instances
within the runtime limit. Runtime to first solution is the run-

Figure 2: Normalized sum-of-costs for deterministic ranking
on the random map. Unsolved MAPF instances are shown
on top of the plot.

time needed to find the first solution, averaged over all 25
test MAPF instances, in which the runtime limit is used for
unsolved instances. Here, we consider only the PP runtime
and ignore the runtime overhead of generating the total pri-
ority orderings for PP because such runtime overhead for SH
and LH is negligible as the start-goal graph distances are pre-
computed, and that for ML-T and ML-P are also consider-
ably small due to the small ML runtime overhead.2 Normal-
ized sum-of-costs is the ratio of the sum-of-costs and the sum
of the start-goal graph distances of all agents. Solution rank
evaluates the relative solution quality as follows: For each
test MAPF instance, we rank the algorithms in ascending
order of the sums-of-costs of their solutions. The lower the
sum-of-costs, the lower the numerical value of the ranking.
The lowest numerical value of the ranking is 0. Algorithms
that lead to the same sum-of-costs have the same ranking,
which is set to the numerical value of the lowest ranking in
the tie. For example, if the sums-of-costs of the 5 algorithms
are [101, 101, 102, 103, 103], then their rankings are [0, 0, 2,
3, 3]. Algorithms that fail to solve the MAPF instances have
the largest numerical value of the ranking. Solution rank is
the average numerical value of the ranking over the 25 test
MAPF instances.

8.1 Deterministic Ranking
We first experiment with deterministic ranking for the base-
line PP algorithms LH, SH, and RND and our ML-guided
PP algorithms ML-T and ML-P on test MAPF instances on
each of the six maps and vary the number of agents within
a reasonable range. Here, each algorithm generates one total
priority ordering and runs PP exactly once for each MAPF
instance. (RND uses the first total priority ordering that the

2The ML runtime overhead mainly comes from the runtime for
collecting features, which, for example, is 0.03 seconds, 0.01 sec-
onds, 0.02 seconds, 0.7 seconds, 4.37 seconds, and 3.34 seconds
per MAPF instance for the six maps with their respective largest
numbers of agents tested in Table 3. Moreover, the features need to
be collected only once for each MAPF instance even if we run PP
multiple times via random restarts.

randomized algorithm generates). We report, in Table 2, the
success rate and the solution rank for all maps and, in Fig-
ure 2, the normalized sum-of-costs for the random map.

In terms of success rate, the two ML-guided algorithms
ML-T and ML-P achieve comparable results as but do not
completely dominate the baseline algorithms. ML-T gener-
ally has a higher success rate than ML-P, but both are often
more prone to failure than LH. In terms of solution quality,
ML-T achives results comparable to RND. Although ML-P
often fails to find a solution, once it does find one, it often
finds a solution with lower sum-of-costs than the other algo-
rithms, as shown in Figure 2. In other words, ML-P suffers
from low success rates but yields promising solution qual-
ities. We therefore consider the random restart technique
to boost the success rate of the two ML-guided algorithms
while preserving their solution qualities.

8.2 Stochastic Ranking with Random Restarts
We now illustrate stochastic ranking in conjunction with
random restarts, which are applied to all five algorithms to
ensure a fair comparison. To make random restarts possi-
ble, we add randomness to the deterministic algorithms LH
and SH. LH relies on the start-goal graph distances of all
agents to determine the total priority ordering. Therefore, for
LH, we use the stochastic ranking method in Section 7 with
zi = dist(si, gi). For SH, since it is the reversed version of
LH, we use the stochastic ranking method in Section 7 with
zi = dist(si, gi) and generate a total priority ordering from
low to high (instead of high to low). We varied parameter
β ∈ {0.1, 0.5, 1.0, 1.5} in the softmax function and picked
β = 0.5 for SH, LH, ML-T, and ML-P as it leads to the best
results. RND is directly used with random restarts. We keep
restarting each algorithm with a new random seed until the
runtime limit is reached. We report, in Table 3, the success
rate and the runtime to the first solution and, in Figure 3, the
solution rank, where the solution, which we refer to as the
final solution, is the one with the least sum-of-costs found
within the runtime limit.

ML-T and ML-P outperform the baseline algorithms in
terms of the success rate, runtime to the first solution, and
sum-of-costs of the final solution on the random, room, and
maze maps. ML-P has a slightly higher success rate and a
better solution rank than ML-T. The advantage of our ML-
guided algorithms is most apparent on these maps when the
number of agents is large and a solution is hard to find with
the baseline algorithms. On the warehouse map, ML-T and
ML-P achieve results comparable to the baseline algorithms.
On the large maps, ML-T achieves comparable success rates
and solution ranks as the baseline algorithms, while ML-
P has a marginally lower success rate but a better solu-
tion rank. These results, to some degree, are consistent with
the difficulty of obtaining high-quality training datasets: As
we described in the “training datasets” and “testing setups”
paragraphs in the beginning of this section, it is difficult to
get good training datasets on the warehouse map and the
large maps due to both the low success rates of existing
PP algorithms and their long runtimes. For example, the
lak303d and ost003d maps are the only two maps on which
we train and test using different numbers of agents. There-

Figure 3: Solution rank for stochastic ranking with random
restarts.

fore, the results demonstrate the limited ability of ML-P to
generalize to a higher number of agents.

8.3 Feature Importance
We now analyze the feature importance of the learned rank-
ing functions with good success rates and solution ranks, i.e.,
on the random, room, and maze maps, each with the largest
number of agents, because these ranking functions most sig-
nificantly outperform the baseline algorithms. We sort the
feature weights w in decreasing order of their absolute val-
ues. Since the features are normalized, we use the absolute
values of the feature weights to represent their importance.

The three ranking functions for ML-T, one for each map,
have nine features in common among their top ten features
with the largest absolute values: the graph and Manhattan
distances between si and gi and their absolute difference
in Feature 1 (three features); the number of vertex conflicts
counted by agent pair in Feature 11 (one feature); and Fea-
tures 4, 6, 9, 10, and 12 (five features).

The three ranking functions for ML-P, one for each map,
have five features in common among their top ten features

Map n
Success rate (%) Runtime to the first solution (seconds)

LH SH RND ML-T ML-P LH SH RND ML-T ML-P

random

150 100 100 100 100 100 0.08 0.65 0.42 0.24 1.37
175 100 100 100 100 100 3.24 2.54 6.22 1.06 1.49
200 88 80 88 100 100 15.60 20.56 18.25 2.13 2.86
225 16 20 28 88 92 51.09 49.70 46.10 8.82 13.17
250 0 0 0 44 52 60.00 60.00 60.00 40.88 33.79

room

50 100 100 100 100 100 0.24 0.17 0.15 0.11 0.65
75 100 100 100 100 100 0.66 1.23 1.13 1.47 0.52
100 84 80 76 100 100 12.56 22.70 23.07 3.35 0.70
125 20 8 4 80 88 49.50 59.60 58.21 16.21 10.18
150 0 0 0 24 32 60.00 60.00 60.00 51.53 44.57

maze

50 100 100 100 100 100 0.61 3.86 2.19 1.30 1.28
70 100 68 68 96 100 3.17 25.48 28.58 3.24 0.49
90 68 16 16 100 100 22.81 55.27 54.18 2.84 0.72
110 44 0 0 92 96 33.67 60.02 60.01 15.22 9.90
130 12 0 0 36 52 52.85 60.01 60.02 42.78 33.90

warehouse

350 96 96 96 100 92 9.67 13.62 13.18 13.45 13.43
400 80 84 72 84 76 26.00 25.24 26.80 24.39 29.06
450 68 48 52 60 48 35.80 39.67 39.45 37.10 40.91
500 24 28 20 20 32 52.86 49.96 52.50 53.06 49.11
550 12 8 8 24 12 58.29 56.73 59.54 56.11 56.63

lak303d

500 100 96 100 100 100 26.74 65.87 62.98 43.78 98.97
600 100 96 92 96 88 58.18 117.80 135.97 100.26 174.64
700 100 96 88 88 84 99.51 140.22 230.52 257.10 270.98
800 100 68 76 68 56 192.71 397.20 395.42 381.47 451.95
900 68 32 32 36 16 423.82 565.70 536.69 541.53 584.13

ost003d

500 100 100 96 96 92 15.68 49.15 60.60 53.10 87.81
600 100 96 96 96 92 43.07 85.94 93.92 94.57 136.83
700 96 92 92 92 88 77.55 163.39 205.10 468.27 232.78
800 100 84 84 92 72 126.35 287.04 299.36 263.53 369.30
900 88 64 64 72 40 273.00 462.16 456.27 420.71 525.51

Table 3: Success rate and runtime to the first solution for stochastic ranking with random restarts. The best results achieved
among all algorithms are shown in bold. The results are obtained by training and testing on the same map with the same
number of agents n, except for maps lak303d and ost003d with n > 500, where the results are obtained by training on the same
map with n = 500.

with the largest absolute values: the graph distance between
si and gi and the absolute difference between the graph and
Manhattan distances between si and gi in Feature 1 (two
features); and Features 4, 6, and 10 (three features).

Taking the intersection between the most important fea-
tures for ML-T and ML-P, we determine the most important
features to be Features 1, 4, 6, and 10, which correspond
to the query-distance heuristic (Feature 1), the least-option
heuristic (Features 4 and 6), and the start-and-goal-conflict
heuristic (Features 10). This indicates that our learned rank-
ing functions cleverly combine the strengths of the existing
heuristic methods.

9 Conclusions and Future Directions
In this paper, we proposed the first ML framework for learn-
ing priority orderings for Prioritized Planing (PP) in the
context of MAPF. We developed two models: model ML-
T learns from a total priority ordering, and model ML-P

learns from a partial priority ordering. Our experimental re-
sults showed that both models significantly outperform ex-
isting PP algorithms on small maps, especially in difficult
scenarios with a large number of agents. ML-T and ML-
P still achieve results comparable to the existing PP algo-
rithms on large maps despite the lack of high-quality training
data. Going forward, we are interested in training our model
on different numbers of agents instead of a fixed number
of agents, which may enable our model to generalize better
across different numbers of agents. We are also interested in
developing a new model that is able to learn features related
to the size and structure of the map so that it can generalize
across different maps.

Acknowledgments
Shuyang Zhang was partially supported by a University of
Southern California’s Center for Undergraduate Research
in Viterbi Engineering (CURVE) Fellowship. The research

was also supported by the National Science Foundation un-
der grant numbers 1409987, 1724392, 1817189, 1837779,
1935712, and 2112533 as well as a gift from Amazon. The
views and conclusions contained in this document are those
of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the spon-
soring organizations, agencies, or the U.S. government.

References
Bennewitz, M.; Burgard, W.; and Thrun, S. 2002. Finding
and optimizing solvable priority schemes for decoupled path
planning techniques for teams of mobile robots. Robotics
and Autonomous Systems, 41(2-3): 89–99.

Buckley, S. J. 1989. Fast motion planning for multiple mov-
ing robots. In IEEE International Conference on Robotics
and Automation, 322–326.

Erdmann, M.; and Lozano-Perez, T. 1987. On multiple mov-
ing objects. Algorithmica, 2(1): 477–521.

Ewing, E.; Ren, J.; Kansara, D.; Sathiyanarayanan, V.; and
Ayanian, N. 2022. Betweenness centrality in multi-agent
path finding. In International Conference on Autonomous
Agents and Multiagent Systems, 400–408.

Fan, R.-E.; Chang, K.-W.; Hsieh, C.-J.; Wang, X.-R.; and
Lin, C.-J. 2008. LIBLINEAR: A library for large linear clas-
sification. The Journal of Machine Learning Research, 9:
1871–1874.

Huang, T.; Dilkina, B.; and Koenig, S. 2021a. Learning
node-selection strategies in bounded-suboptimal conflict-
based search for multi-agent path finding. In International
Conference on Autonomous Agents and Multiagent Systems,
611–619.

Huang, T.; Dilkina, B.; and Koenig, S. 2021b. Learning to
resolve conflicts for multi-agent path finding with conflict-
based search. In AAAI Conference on Artificial Intelligence,
11246–11253.

Huang, T.; Li, J.; Koenig, S.; and Dilkina, B. 2022. Anytime
multi-agent path finding via machine learning-guided large
neighborhood search. In AAAI Conference on Artificial In-
telligence.

Joachims, T. 2006. Training linear SVMs in linear time.
In ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 217–226.

Kaduri, O.; Boyarski, E.; and Stern, R. 2020. Algorithm se-
lection for optimal multi-agent pathfinding. In International
Conference on Automated Planning and Scheduling, 161–
165.

Khalil, E. B.; Le Bodic, P.; Song, L.; Nemhauser, G. L.; and
Dilkina, B. 2016. Learning to Branch in Mixed Integer Pro-
gramming. In AAAI Conference on Artificial Intelligence,
724–731.

Li, H.; Long, T.; Xu, G.; and Wang, Y. 2019. Coupling-
degree-based heuristic prioritized planning method for UAV
swarm path generation. In Chinese Automation Congress,
3636–3641.

Ma, H.; Harabor, D.; Stuckey, P. J.; Li, J.; and Koenig, S.
2019. Searching with consistent prioritization for multi-
agent path finding. In AAAI Conference on Artificial Intelli-
gence, 7643–7650.
Ma, H.; Yang, J.; Cohen, L.; Kumar, T.; and Koenig, S. 2017.
Feasibility study: Moving non-homogeneous teams in con-
gested video game environments. In Artificial Intelligence
and Interactive Digital Entertainment Conference, 270–272.
Morris, R.; Pasareanu, C. S.; Luckow, K. S.; Malik, W.; Ma,
H.; Kumar, T. K. S.; and Koenig, S. 2016. Planning, schedul-
ing and monitoring for airport surface operations. In AAAI
Workshop on Planning for Hybrid Systems, 608–614.
Ren, J.; Sathiyanarayanan, V.; Ewing, E.; Senbaslar, B.; and
Ayanian, N. 2021. MAPFAST: A deep algorithm selector for
multi agent path finding using shortest path embeddings. In
International Conference on Autonomous Agents and Multi-
agent Systems, 1055–1063.
Sharon, G.; Stern, R.; Goldenberg, M.; and Felner, A. 2013.
The increasing cost tree search for optimal multi-agent
pathfinding. Artificial Intelligence, 195: 470–495.
Silver, D. 2005. Cooperative pathfinding. In Artificial Intel-
ligence and Interactive Digital Entertainment Conference,
117–122.
Stern, R.; Sturtevant, N. R.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T. T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T. K. S.;
Barták, R.; and Boyarski, E. 2019. Multi-agent pathfinding:
Definitions, variants, and benchmarks. In Annual Sympo-
sium on Combinatorial Search, 151–158.
Surynek, P. 2010. An optimization variant of multi-robot
path planning is intractable. In AAAI Conference on Artifi-
cial Intelligence, 1261–1263.
van den Berg, J. P.; and Overmars, M. H. 2005. Prioritized
motion planning for multiple robots. In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, 430–
435.
van den Berg, J. P.; Snoeyink, J.; Lin, M. C.; and Manocha,
D. 2009. Centralized path planning for multiple robots: Op-
timal decoupling into sequential plans. In Robotics: Science
and Systems V, 2–3.
Veloso, M.; Biswas, J.; Coltin, B.; and Rosenthal, S.
2015. Cobots: Robust symbiotic autonomous mobile ser-
vice robots. In International Joint Conference on Artificial
Intelligence, 4423–4429.
Wang, J.; Li, J.; Ma, H.; Koenig, S.; and Kumar, S. 2019. A
new constraint satisfaction perspective on multi-agent path
finding: Preliminary results. In International Conference on
Autonomous Agents and Multiagent Systems, 2253–2255.
Wu, W.; Bhattacharya, S.; and Prorok, A. 2020. Multi-robot
path deconfliction through prioritization by path prospects.
In IEEE International Conference on Robotics and Automa-
tion, 9809–9815.
Wurman, P. R.; D’Andrea, R.; and Mountz, M. 2008. Co-
ordinating hundreds of cooperative, autonomous vehicles in
warehouses. AI Magazine, 29(1): 9–9.
Yu, J.; and LaValle, S. M. 2013. Structure and intractability
of optimal multi-robot path planning on graphs. In AAAI
Conference on Artificial Intelligence, 1443–1449.

