
Multi-Train Path Finding Revisited

Zhe Chen1, Jiaoyang Li2, Daniel Harabor1, Peter J. Stuckey1, Sven Koenig2

1Monash University, Australia
2University of Southern California, USA

{zhe.chen,daniel.harabor,peter.stuckey}@monash.edu, {jiaoyanl,skoenig}@usc.edu

Abstract

Multi-Train Path Finding (MTPF) is a coordination problem
that asks us to plan collision-free paths for a team of moving
agents, where each agent occupies a sequence of locations at
any given time. MTPF is useful for planning a range of real-
world vehicles, including rail trains and road convoys. MTPF
is closely related to another coordination problem known as
k-Robust Multi-Agent Path Finding (kR-MAPF). Although
similar in principle, the performance of optimal MTPF algo-
rithms in practice lags far behind that of optimal kR-MAPF
algorithms. In this work, we revisit the connection between
them and reduce the performance gap. First, we show that, in
many cases, a valid kR-MAPF plan is also a valid MTPF plan,
which leads to a new and faster approach for collision reso-
lution. We also show that many recently introduced improve-
ments for kR-MAPF, such as lower-bounding heuristics and
symmetry reasoning, can be extended to MTPF. Finally, we
explore a new type of pairwise symmetry specific to MTPF.
Our experiments show that these improvements yield large
efficiency gains for optimal MTPF.

Introduction
Train planning is an important component in the operational
planning process for rail networks. In this problem, we are
asked to compute collision-free paths for rolling stock ve-
hicles that transport goods and passengers in a rail network
(Lusby et al. 2011; Laurent et al. 2021). In robotics and com-
puter games, a related problem arises, which involves plan-
ning the motions of non-holonomic agents, such as snakes or
convoys (Singh, Gong, and Choset 2018; Takemori, Tanaka,
and Matsuno 2018; Mokhtar et al. 2020). Here, each agent
consists of several flexible segments that follow the same
path as the head. Although substantially different in practice,
all these problems share common features: (i) many agents
are operating simultaneously; (ii) the agents have different
lengths, which means that they occupy more than one lo-
cation at a time; and (iii) movements must be coordinated
to avoid collisions between the agents and inside the agents
themselves.

Multi-Train Path Finding (MTPF) (Atzmon, Diei, and
Rave 2019) is an abstract model for solving these types
of problems on a grid or, in general, graph. MTPF is

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: A kR-MAPF plan with no collisions (left) and an
MTPF plan with a collision at D at timestep t + 4 (right).
In both figures, agent 1 moves from left to right across the
map. Its location is C at timestep t, and it waits for two
timesteps once at E. Meanwhile, agent 2 enters D at timestep
t + 4. The number of vertices occupied by an agent in kR-
MAPF shrinks when the agent is waiting. However, an agent
in MTPF always occupies multiple vertices at each timestep.

closely related to k-Robust Multi-Agent Path Finding (kR-
MAPF) (Atzmon et al. 2018), itself an NP-hard problem,
where agents occupy just one location at a time but the com-
puted plan must remain collision-free during execution for
up to k unexpected delays for any agent. Figure 1 illustrates
the difference.

In this work, we show that kR-MAPF is a strict relax-
ation of MTPF. We then describe a new Conflict-Based
Search (Sharon et al. 2015) strategy for solving MTPF sig-
nificantly more efficiently. Our first contribution exploits the
relaxation to simplify collision resolution. In particular, we
show that, in many cases, agents can be replanned using a
kR-MAPF model, which speeds up re-planning. Our second
contribution concerns symmetric collisions between agents,
which is one of the principle difficulties that make MAPF (Li
et al. 2019b, 2020) and kR-MAPF (Chen et al. 2021) algo-
rithms inefficient in practice. We generalize kR-MAPF sym-
metry reasoning techniques to handle agents with different
lengths or robustness requirements and then apply them to
prune the MTPF search space aggressively. Our last con-
tribution explores a new kind of symmetric collisions that
occur only in MTPF and shows how to resolve them more
efficiently. Together, the three techniques significantly im-
prove the efficiency of solving MTPF optimally, as we show



in a range of experiments and across a variety of domains.

Train Scheduling vs. Train Planning
Existing research on rail operations focuses on train schedul-
ing (Yang et al. 2016; Cacchiani, Qi, and Yang 2020; Lusby
et al. 2011), which includes network planning, line plan-
ning, timetable generation, train routing, and platform as-
signment. Our work focuses on optimal collision-free path
planning for agents with lengths. In the literature, this prob-
lem is called Multi-Train Path Finding (Atzmon et al. 2018),
although the setup applies more broadly (e.g., road convoys,
snake robots, etc.). We aim to compute paths that allow train-
like agents to move from start to goal without collisions.
Higher-level train-planning, like line planning or network
planning, is performed based on path information provided
by path planning. Lower-level train-planning is more about
train management and operation. Both are beyond the scope
of this research.

Multi-Train Path Finding (MTPF)
We assume an operating environment that can be modeled
as an undirected or directed graph G = (V,E), where each
vertex has up to 4 neighbors1 (e.g., a gridmap or rail net-
work). m agents A = {a1, ..., am} operate on the graph.
Every agent ai is assigned a start vertex si ∈ V , a goal
vertex gi ∈ V , and a body length ki ∈ N. Its total length
is ki + 1, accounting for its head. Time is discretised into
unit-size timesteps. At each timestep, the agents move to a
neighboring vertex or wait at their current vertex. Each move
or wait action takes unit time.

A path πi of agent ai consists of a set of occupation lists.
We denote the ki + 1 vertices that ai occupies at timestep t
asOi(t) = [v0, . . . , vki

] and the first vertex inOi(t) as hi(t)
(called the head vertex). If the head of the agent is at vertex
v0 at timestep t and moves to v−1 at timestep t+ 1, then the
new occupation list is Oi(t + 1) = [v−1, v0, . . . , vki−1]. If
the agent waits, then Oi(t+ 1) = Oi(t).

Each agent’s occupation list includes only its head ver-
tex when the agent is at its start vertex. When the agent
moves away from its start vertex, it grows in size to oc-
cupy ki + 1 vertices eventually. This model fits rail net-
works where trains begin in private sliding (offmap parking)
or road networks where convoys start from private parking
stations. It is also possible that the initial occupation list con-
sists of ki+1 vertices, but this goes beyond the data provided
by our set of benchmark instances.

Compared to previous models for MTPF (Atzmon, Diei,
and Rave 2019) and kR-MAPF (Atzmon et al. 2018; Chen
et al. 2021), which assume that all agents have the same
length and robustness guarantee (respectively), our approach
allows each agent ai to have an individual value for ki. We
also consider three variants of MTPF, each one of which cor-
responds to a different real-world scenario of different com-
putational difficulty:

1This restriction is only required for our rectangle symmetry
breaking technique. Otherwise, the 4-neighbor restriction can be
relaxed, and all other techniques remain applicable.

• MTPF Variant 1: Existing research (Atzmon, Diei, and
Rave 2019) considers agents that shrink to total length
1 and continue to occupy only their goal vertices once
they arrive there. This is analogous to the standard MAPF
problem.

• MTPF Variant 2: A second variant assumes that agents
enter private slidings when they arrive at their goal ver-
tices and thus disappear from the map, which means that
they shrink to total length 0 and no longer occupy any
vertices. This is the MTPF variant used in the NeurIPS
2020 Flatland Challenge (Laurent et al. 2021).

• MTPF Variant 3: A third variant assumes that each agent
parks its head at its goal vertex, thus occupying ki + 1
vertices once arrived there. This variant is distinct from a
variant where the goal fully specifies the final vertices of
the head and body of the agent.

A plan π is a set of paths πi for each agent ai. It is a
valid MTPF plan iff it does not contain any conflicts of the
following three kinds.
Definition 1 (Occupation Conflicts). An occupation conflict
〈ai, aj , v, t〉 occurs iff agents ai and aj both occupy vertex
v at timestep t, i.e., v ∈ Oi(t) ∩Oj(t).
Definition 2 (Self Conflicts). A self conflict 〈ai, v, t〉 occurs
iff agent ai occupies vertex v at timestep t more than once,
i.e., v appears more than once in Oi(t).
Definition 3 (Edge Conflicts). If ki = 0 and kj = 0, then an
edge conflict occurs iff agents ai and aj traverse the same
edge in opposite directions at the same timestep. Otherwise,
an edge conflict implies an occupation conflict. We ignore
edge conflicts in the remainder of the paper, but they are
handled correctly by our implementation.

Our task is to find an optimal MTPF plan, which is a valid
MTPF plan that minimizes some objective. We use the Sum
of Individual Costs (SIC)

∑
i eti, where eti is the end time

(equivalent to the number of timesteps in the path) for agent
ai.

Previous Approaches
We provide a brief overview of existing work for MTPF
(which we tackle) and a closely related variant known as
kR-MAPF (from which we adapt various ideas).

MT-CBS
Multi-Train Conflict-Based Search (MT-CBS) (Atzmon,
Diei, and Rave 2019) is an algorithm capable of computing
optimal MTPF plans. It is a variant of the popular CBS al-
gorithm (Sharon et al. 2015) for optimal MAPF. We provide
a brief description of MT-CBS, since it is closely related to
our own contributions.

In MT-CBS, each agent is assigned a path from its start
vertex to its goal vertex. Coordination between agents is due
to constraints in a binary Constraint Tree (CT). Each node n
in the CT is associated with a set of constraints C and a plan
π. If n is chosen for expansion and π has no conflicts, then
MT-CBS returns π as an optimal MTPF plan. Otherwise, it
selects an occupation conflict 〈ai, aj , v, t〉 in π and deter-
mines a disjunction of constraints ci ∨ cj which is true in



any valid MTPF plan, but each of whose disjuncts prevents
the chosen conflict from repeating. n is then expanded by
adding two child nodes to the CT, one with the constraint set
C ∪ {ci} and the other one with the constraint set C ∪ {cj}.
Only one of the two agents ai and aj is replanned in each
child node to determine a new path for it. To address the
occupation conflict, MT-CBS uses the two occupation con-
straints
• ci ≡ v 6∈ Oi(t) and
• cj ≡ v 6∈ Oj(t).

Clearly, any valid MTPF plan π must satisfy ci∨cj because,
otherwise, both agents occupy vertex v at timestep t, leading
to an occupation conflict. The authors of (Atzmon, Diei, and
Rave 2019) also modified the low-level path planner to avoid
assigning agents paths with self conflicts (which we describe
in detail later).

kR-MAPF and K-CBS
kR-MAPF (Atzmon et al. 2018) is a variant of MAPF that
aims to handle the situation where agents can be unexpect-
edly delayed during the execution of the plan. Such delays
can happen for a number of reasons, e.g., due to mechanical
difference, failure, or an agent being otherwise interrupted
on the way to its goal vertex. A valid kR-MAPF plan avoids
conflicts due to such delays as long as no agent is delayed
by more than k timesteps, where the delay limit k is a user-
provided parameter. K-CBS (Atzmon et al. 2018) computes
optimal kR-MAPF plans that provide such guarantees. It de-
tects k-delay conflicts, which occur between two agents ai
and aj at vertex v at timestep t iff hi(t) = hj(t

′) = v and
0 ≤ t′ − t ≤ k, and resolves each of them by the two sets of
head constraints
• ci ≡ ∀t′ ∈ [t, t+ k], hi(t

′) 6= v and
• cj ≡ ∀t′ ∈ [t, t+ k], hj(t

′) 6= v.
Unfortunately, K-CBS suffers from a variety of issues that
can make it inefficient. Recent work (Chen et al. 2021) im-
proves it via the addition of speed-up techniques such as
admissible heuristics (Felner et al. 2018), conflict prioriti-
zation (Boyarski et al. 2015), and symmetry reasoning (Li
et al. 2020). The resulting algorithm K-CBSH-RCT repre-
sents the state-of-the-art in this area.

Low-Level Solver in MT-CBS and K-CBS
A critical component of CBS for optimal MAPF is the plan-
ning and re-planning of single-agent paths in its low level,
subject to constraints. For an agent ai with ki = 0, a sim-
ple A* search is sufficient. Here, constraints are modeled as
temporal obstacles, and a path of smallest end time is re-
turned, where ties are broken by a secondary criterion, such
as the number of times the path uses spatio-temporal vertices
assigned to the paths of other agents in the current plan. We
call this solver Low-Level Path Planning (LLPP).

LLPP is also applicable to K-CBS since resolving con-
flicts caused by delays requires adding only head constraints.
However, this is not the case for MTPF, where self conflicts
can occur. To avoid self conflicts and to distinguish occupa-
tions with the same head vertex but different body vertices,

an agent with body length ki > 0 must remember all its
ki +1 occupied vertices during the search . In addition, if an
agent is constrained by an occupation constraint v 6∈ Oi(t),
we must record all vertices occupied by the agent to ensure
satisfaction of the constraint. This makes path planning for
MTPF much more time-consuming. We call this solver Low-
Level Train Planning (LLTP).

MTPF Plans from kR-MAPF Plans
We first extend kR-MAPF to handling agents of varying
k values and then show that kR-MAPF is a relaxation of
MTPF.

kR-MAPF with Varying Robustness
kR-MAPF assumes that the delay of each agent is at most k
timesteps. We now generalize kR-MAPF to handling agents
ai with different delay limits ki.

Definition 4 (∆-Delay Conflicts). A ∆-delay conflict
〈ai, aj , v, t,∆〉 occurs iff agents ai and aj plan to enter the
same vertex v at timesteps t and t′ = t + ∆, ∆ ∈ [0, ki],
respectively, i.e., hi(t) = hj(t

′) = v and 0 ≤ t′ − t ≤ ki.
A plan is a valid kR-MAPF plan iff it contains no ∆-delay

conflict. We resolve a ∆-delay conflict 〈ai, aj , v, t,∆〉 by
the two head constraints

• ci ≡ ∀t′ ∈ [t, t+ kj ], hi(t
′) 6= v and

• cj ≡ ∀t′ ∈ [t, t+ ki], hj(t
′) 6= v.

Theorem 1. Any valid kR-MAPF plan π satisfies ci ∨ cj .

Proof. Assume the contrary, namely that a valid kR-MAPF
plan π violates both constraints, so agent ai occupies vertex
v at timestep ti ∈ [t, t + kj ] and agent aj occupies vertex
v at timestep tj ∈ [t, t + ki]. If ti ≤ tj , then the earliest
timestep when agent ai occupies vertex v is timestep ti = t
and the latest timestep when agent aj occupies vertex v is
timestep tj = t + ki. Then, tj − ti ≤ t + ki − t = ki and
agents ai and aj have a ∆-delay conflict. If tj < ti, then
ti − tj ≤ t + kj − t = kj , and agents aj and ai have a
∆-delay conflict. Since there is a ∆-delay conflict in either
case, π is not a valid plan. Contradiction.

kR-MAPF as a Relaxation of MTPF
We now show that kR-MAPF is a strict relaxation of MTPF.

Lemma 1. A plan with a ∆-delay conflict has an occupation
conflict.

Proof. Given a ∆-delay conflict 〈ai, aj , v, t,∆〉, we know
that hi(t) = v. Because agent ai has body length ki for the
MTPF instance, it occupies vertex v at least until timestep
t + ki. Since ∆ ≤ ki, there is an occupation conflict
〈ai, aj , v, t+ ∆〉.

The reverse does not hold. For example, Figure 1(right)
shows an occupation conflict 〈a1, a2, D, t + 4〉, which is
not a ∆-delay conflict, as indicated by Figure 1(left). With
Lemma 1, we have the following key theorem.

Theorem 2. A valid MTPF plan is a valid kR-MAPF plan.



Algorithm 1: Lazy Train Path Finding by CBS.
LT-CBS(G, A):

foreach ai ∈ A:
Mi = LLPP
// M records each agent’s low-level
πi = a shortest path for agent ai planned by Mi

Q.insert((π, ∅,M))
while Q 6= ∅:

(π,C,M) = Q.pop()
// The top entry is also removed
if π has a ∆-delay conflict: // or edge conflict

select a ∆-delay conflict x ≡ 〈ai, aj , v, t,∆〉 in π
(ci, cj) = constraints for resolving x
replan-insert(ai, C ∪ {ci}, M , π)
replan-insert(aj , C ∪ {cj}, M , π)

elseif π has a self conflict:
choose self conflict 〈ai, v, t〉 in π
Mi = LLTP
replan-insert(ai, C, M , π)

elseif π has a (head) occupation conflict:
choose occupation conflict x ≡ 〈ai, aj , v, t〉 in π
(ci, cj) = constraints for resolving x
replan-insert(ai, C ∪ {ci}, M , π)
Mj = LLTP
replan-insert(aj , C ∪ {cj}, M , π)

else: return π
return ⊥

replan-insert(ai, C, M , π):
π′i = a shortest path for agent ai that satisfies C planned

by Mi

if π′i exists: Q.insert((π − {πi} ∪ {π′i}, C,M))
return

Lazy Train Path Finding
As discussed, LLTP for finding valid MTPF plans is much
more time-consuming than LLPP for finding valid kR-
MAPF plans, particularly as the body lengths of agents
grow. Therefore, when solving MTPF, we delay using the
expensive LLTP by searching for valid kR-MAPF plans first
since any valid MTPF plan is also a valid kR-MAPF plan.
That is, when running CBS, we first resolve ∆-delay con-
flicts with LLPP. Only when a plan is a valid kR-MAPF
plan, we resolve its occupation and self conflicts with LLTP.
Algorithm 1 shows our algorithm. which we call Lazy Train
Path Finding by CBS (LT-CBS).

To start with, we construct an initial plan π where every
agent ai takes its shortest path, as computed by LLPP. A
priority queue of nodes Q stores triples of the type (π, C,
M ), where π is the plan, C is the set of constraints, and M
stores the low-level solver (either LLPP or LLTP) for each
agent. The root node stores the initial plan, no constraints,
and LLPP for all agents.

Like MT-CBS, we pop the node with the lowest f -value
from the priority queue. The f -value in MT-CBS is the SIC
of the plan of the node (i.e., f = g). In LT-CBS, we use
f = g + h, where the h-value is an admissible heuris-

tic adapted from MAPF (Felner et al. 2018) that under-
estimates the minimum increase of the SIC of the plan when
resolving all of its conflicts.

When expanding a node, we resolve a ∆-delay conflicts
with highest priority. This means computing constraints to
resolve the conflict (using symmetry reasoning where appli-
cable; we discuss this shortly) and replanning the paths of
the two affected agents. The result is two new child nodes
which are added to the priority queue. Each child node uses
the same low-level solvers as the parent node.

We resolve a self conflict with second-highest priority.
If any agent ai has a self conflict, we change its low-level
solver Mi to LLTP and find a new path for it. We then add
to the priority queue a new node with the revised path and
no additional constraints. All descendant nodes of this node
will use LLTP as the low-level solver for agent ai.

We resolve an occupation conflict with the lowest priority.
MT-CBS uses LLTP to plan paths for both agents involved
in an occupation conflict. But, by resolving only head occu-
pation conflicts, we only need to change the low-level solver
of one of the two agents to LLTP.

If there is no conflict, then we return the current plan.

Definition 5 (Head Occupation Conflicts). An occupation
conflict 〈ai, aj , v, t〉 is a head occupation conflict iff v =
hi(t) or v = hj(t), that is, the conflict involves the head of
some agent. Without loss of generality, we assume a head
occupation conflict 〈ai, aj , v, t〉 always has v = hi(t).

Lemma 2. An MTPF plan with an occupation conflict has
a head occupation conflict.

Proof. Consider an occupation conflict 〈ai, aj , v, t〉. If v =
hi(t) or v = hj(t), then the conflict is a head occupation
conflict, and we are done. Otherwise, both agents occupied
vertex v already one timestep earlier since their heads moved
through v. So v ∈ Oi(t − 1) ∩ Oj(t − 1), indicating that
the two agents have an occupation conflict 〈ai, aj , v, t− 1〉.
Recursing the argument gives the desired result.

Because of Lemma 2, we restrict the consideration of oc-
cupation conflicts in LT-CBS to head occupation conflicts.
We resolve a head occupation conflict 〈ai, aj , v, t〉 by a head
constraint and an occupation constraint

• ci ≡ hi(t) 6= v and
• cj ≡ v /∈ Oj(t).

Atzmon, Diei, and Rave (2019) show that any valid MTPF
plan satisfies ci ∨ cj . We have to use LLTP to plan paths for
aj , but, for ai, which only gets a head occupation constraint,
we can still use the same low-level solver as in the parent
node.

Lemma 3. Any valid MTPF plan satisfies the constraints
of at least one node in priority queue in every iteration of
LT-CBS.

Proof. The lemma holds for the first iteration of LT-CBS
because priority queue contains only the root node, which
has no constraints. We have shown that any valid MTPF plan
must satisfy at least one of the disjunctive constraints that
are used to resolve the chosen conflict in a given node n, so



(a) Rectangle conflict. (b) Corridor conflict.

(c) Target conflict. (d) Parking conflict.

Figure 2: Different symmetric conflicts.

any valid MTPF plan that satisfies the constraints of n also
satisfies the constraints of at least one of its child nodes. The
lemma can be then proved by induction.

Lemma 4. The number of nodes expanded by LT-CBS with
f -values no larger than a given constant is finite.

Proof. Since graphG is finite, the number of plans with SIC
no larger than the given constant is finite, thus the number
of conflicts that can occur in these plans is also finite. A
conflict never appears again after resolving it via expansion,
so the number of CT nodes with g-values no larger than the
given constant is no larger than the number of these conflicts,
i.e., it is also finite. Moreover, the h-values of the nodes are
always non-negative, so the number of nodes with f -values
no larger than the given constant is finite.

Theorem 3. LT-CBS is complete and optimal.

Proof. We follow the proof for CBS (Sharon et al. 2015).
The low-level solvers, LLPP and LLTP, are both A*-based
searches and complete and optimal. The high level of LT-
CBS is also an A* search with completeness guarantee due
to Lemma 3. Therefore, the first chosen node with a valid
MTPF plan has the minimum SIC; LT-CBS is optimal. From
Lemma 4, a valid MTPF plan must be found after a finite
number of expansions if it exists; LT-CBS is complete.

We will introduce several symmetry reasoning techniques
for LT-CBS in next section. As long as they guarantee that
any valid MTPF plan must satisfy the disjunction of the new
symmtey-breaking constraints, Theorem 3 holds, and LT-
CBS is complete and optimal.

Symmetry Breaking
Now, we introduce constraint reasoning techniques to re-
solve symmetric conflicts in a single branching step. Fig-
ure 2 shows examples of four different types of symmetric
conflicts. Left untreated, each of them can cause the CT to
grow exponentially, leading to timeout failure for CBS (Li
et al. 2021). The rectangle, corridor, and target conflicts have

(a) (b)

Figure 3: (a) Rectangle conflict between two agents. We
place barrier constraints that forbid each agent from exiting
the rectangle area at their currently optimal time. Each bar-
rier is extended in the temporal dimension by a number of
timesteps equal to the body length of the other agent. The
dashed lines indicate a valid MTPF plan (where the blue
agent waits for one timestep at the blue-crossed vertex) that
violates both barrier constraints at the respective crossed ver-
tices. (b) The blue barrier is pushed away by one step from
the yellow rectangle area. Now, the blue path does not vi-
olate the blue barrier constraint. Thus, the plan satisfies the
disjunction of the two barrier constraints.

been previously considered for (global k) kR-MAPF (Chen
et al. 2021). We extend these results to kR-MAPF with vary-
ing robustness and to MTPF. Given the space limit, we pro-
vide only a sketch of each technique with a focus on how we
modify it from using a global k for all agents to using dif-
ferent ki for different agents ai. The parking conflict is new
and specific to MTPF.

Rectangle Conflicts
This conflict occurs when two agents cross an area in or-
thogonal directions at the same time. Each agent has many
shortest paths, but each one results in a new conflict with the
other agent. Figure 2a shows an example: All shortest paths
of agent 1 collide with all shortest paths of agent 2 in the yel-
low shaded rectangle area. To resolve this conflict efficiently,
we can use a pair of barrier constraints (each of which is a
set of head constraints) that prevents one of the conflicting
agents from exiting the rectangle area at its currently opti-
mal timestep (and maybe timesteps afterward, depending on
the body length of the other agent). For example, the barrier
constraints for the two agents in Figure 2a are

• B1 ≡ h1(2) 6= F3 ∧ h1(3) 6= F4 and
• B2 ≡ h2(3) 6= E4∧h2(4) 6= E4∧h2(4) 6= F4∧h2(5) 6=

F4.

Here, B2 blocks two timesteps per exit vertex for agent 2
because, even if agent 2 waits for one timestep and then



enters the rectangle area, it still collides with the body of
agent 1. Any valid MTPF plan satisfies B1 ∨ B2, and a set
of collision-free paths can be found if we replan for agent 1
with respect to B1 or for agent 2 with respect to B2. That
is, such pair of barrier constraints can resolve the rectan-
gle conflicts in a single branching step while preserving the
completeness and optimality of LT-CBS.

However, this technique does not always work. Figure 3a
shows a counterexample where the pair of dashed paths is
a valid MTPF plan that violates both barrier constraints. To
address this issue, Chen et al. (2021) propose to “push away”
the barrier constraints from the rectangle area, as shown in
Figure 3b. Formally, we define a series of entrance and exit
barrier constraints:

• ai Exits: Bi[li, pi],
• ai Entrances: B′i[li, pi],
• aj Exits: Bj [lj , pj ], and
• aj Entrances: B′j [lj , pj ],

where pi ∈ [0, kj ] and pj ∈ [0, ki] are the “thickness” (i.e,
how many timestep are disallowed from the earliest timestep
that the constrained agent could reach the constrained ver-
tex) of the barriers, and li = bpj

2 c and lj = bpi

2 c are the dis-
tances for which the barriers are pushed away from the rect-
angle area. Intuitively, an entrance barrier and an exit barrier
for an agent are a pair of barrier constraints that it must vi-
olate to enter and exit the rectangle area, each one “thicker”
than the last in the temporal dimension but each one also
being “pushed” further away from the rectangle area than
the last. To resolve a rectangle conflict, we require that ev-
ery optimal path that uses an exit barrier must pass through
the corresponding entrance barrier. We then branch on the
exit barriers with the largest p satisfying this requirement to
eliminate as many conflicts as possible. Please refer to (Chen
et al. 2021) for the details of these barrier constraints. The
completeness and optimality proofs from Chen et al. (2021)
still hold here as we only change the range of pi and pj .

Corridor Conflicts
A corridor is a sequence of verticesC = [B, v1, . . . , vn, E],
where each interior vertex vi is only connected to the two
adjacent neighbors in the list. Its length l is the distance be-
tween its endpoints. A corridor conflict is a ∆-delay conflict
〈ai, aj , v, t,∆〉 with v ∈ C and agents ai and aj moving in
opposite directions inside the corridor. Figure 2b shows an
example. Chen et al. (2021) develop a constraint reasoning
technique to resolve such conflicts in (global k) kR-MAPF.
We extend this technique to agents with individual k values.
The new constraints are

• ci ≡ ∀t ∈ [0,min(τEi − 1, tBj + l + kj)], hi(t) 6= E and

• cj ≡ ∀t ∈ [0,min(τBj − 1, tEi + l + ki)], hj(t) 6= B,

where agent ai (resp. aj) moves fromB toE (resp.E toB),
tyx is the earliest timestep for agent ax to reach vertex y, and
τyx is the earliest timestep for agent ax to reach vertex y with-
out traversing the corridor. Any valid MTPF plan satisfies
ci ∨ cj because, otherwise, there is a valid MTPF plan that
moves agent ai to E at timestep ti ≤ min(τEi −1, tBj +l+kj)

Figure 4: Constraint tree for resolving the parking conflict
in Figure 2d. (x,y)@t indicates a conflict at vertex (x,y) at
timestep t. Blue branches add constrains to agent 1, and yel-
low to agent 2. +C indicates a valid MTPF plan with a SIC
that is C larger than the cost of the root node.

and aj to B at timestep tj ≤ min(τBj − 1, tEi + l + ki). Let
us focus on ai first. Since ti ≤ τEi − 1 < τEi , ai can only
traverse the corridor to reach E. The latest timestep for ai to
enter the corridor from B is ti − l ≤ tBj + kj , which is one
timestep earlier than the earliest timestep when aj can com-
pletely leave B. Given that the plan is conflict-free, ai must
traverse the corridor before aj . However, using the similar
reasoning on aj can prove that aj must traverse the corri-
dor before ai, resulting in conflicting arguments. Therefore,
c1 ∨ c2 holds in any valid MTPF plan.

Target Conflicts
In MTPF Variants 1 and 3, the agents occupy their goal ver-
tices forever after they complete their paths. A target conflict
is a 0-delay conflict of the form 〈ai, aj , gi, t, 0〉, t ≥ eti;
i.e., agent aj runs into agent ai which waits at its goal ver-
tex. Figure 2c gives an example. To resolve target conflicts
in kR-MAPF, Chen et al. (2021) propose branching on the
end time eti of agent ai. We extend it to handle individual
ki values by branching via constraints

• ci ≡ eti > t+ kj and
• cj ≡ eti ≤ t+ kj .

For the child node with ci, we replan for agent ai by forcing
it to complete its path after timestep t + kj . For the child
node with cj , we require that agent ai never completes its
path later than t + kj . cj also indicates that any other agent
ax, x 6= i cannot have hx(tx) = gi, tx ≥ t+kj−kx because,
otherwise, ax occupies gi until timestep tx + kx ≥ t + kj ,
conflicting with ai which has waited at gi since timestep t+
kj . Clearly, c1 ∨ c2 holds in any valid MTPF plan.

Parking Conflicts
In Variant 3, a new kind of head occupation conflict arises
of form 〈ai, aj , v, t〉, t ≥ eti, v 6= gi; i.e., agent aj runs into
the body of agent ai which is “parked” at its goal vertex. Fig-
ure 2d gives an example. LT-CBS needs to split many times,
as shown in Figure 4, since the child nodes that simply delay
agent 2 by one timestep look more attractive than those that
force agent 1 to change its parking position (recall only the
head must be at the goal vertex). Parking conflicts are espe-
cially challenging when t is far greater than the end time eti
of agent ai. Although similar to target conflicts, we cannot



treat situations in the same way, since the parked agent ai
could possibly park its body in a different final position.

To efficiently resolve parking conflicts, we introduce the
parking constraint and use disjoint splitting (Li et al. 2019a)
to generate ci ∨ cj , namely
• ci ≡ v ∈ Oi(eti) ∧ eti ≤ t and
• cj ≡ v /∈ Oi(eti) ∨ eti > t.

Constraint ci asks agent ai to complete its path before
timestep t and permanently “park” on vertex v. A conse-
quence of this constraint is that any other agent occupying
vertex v at or after timestep tmust also be replanned. That is,
ci implies ∀x 6= i ∀tx ≥ t, v /∈ Ox(tx). Constraint cj asks
ai to not “park” at vertex v until after timestep t. If both ci
and cj are simultaneously violated it means there exists an
agent ai with v ∈ Oi(eti), eti ≤ t and another agent aj has
hj(t

′) = v, t′ > t; i.e., there must exist a parking conflict.
Clearly ci ∨ cj holds in any valid MTPF plan.

Experiments
We compare our approaches to MTPF with the original ap-
proach MT-CBS (Atzmon, Diei, and Rave 2019). We com-
pare MT-CBS against three variants of LT-CBS, namely the
basic variant LT-CBS defined in Algorithm 1, the strongest
variant LT-CBSH-RCT, which uses admissible (H)euristics
and symmetry reasoning for (R)ectangles, (C)orridors, and
(T)arget conflicts, and a strawman variant LT-CBSH-RCT−,
which resolves only ∆-delay conflicts (i.e., ignores occu-
pation and self conflicts) and thus finds optimal kR-MAPF
plans. Because of Theorem 2, the optimal kR-MAPF plan
found by LT-CBSH-RCT− is an optimal MTPF plan iff the
plan does not contain any occupation and self conflicts. That
is, LT-CBSH-RCT− succeeds iff its found plan is a valid
MTPF plan. We use it to show the strength of the relaxation
for MTPF. (P)arking conflicts reasoning is applicable to and
thus considered in only MTPF Variant 3. All algorithms
were written in C++. The experiments were performed on
a server with Intel Xeon CPU (Skylake) and 64 GB RAM,
with a runtime limit of 90 seconds.

We use 4 grid-based maps from a standard MAPF bench-
mark set (Stern et al. 2019), namely random-32-32-10 (de-
noted random), room-32-32-4 (denoted room), warehouse-
20-40-10-2-1 (denoted warehouse), and den520d (denoted
game). We also test on Flatland Challenge (Laurent et al.
2021), a train planning problem where the trajectories of
moving agents must be coordinated on a simplified rail net-
work. Our experiments use flatland-rl v2.2.2 to generate
problem instances. For each domain, we consider an increas-
ing number of agents, and for each number of agents, we
solve 25 different instances. We uniformly generate body
lengths for agents ai with

ki = Kmax − (i− 1) mod (Kmax + 1),

where Kmax is an experiment parameter that defines the
maximum body length.

MTPF Variant 1 on Grid-Based Maps
This setup is the same as (Atzmon, Diei, and Rave 2019),
and we therefore compare the success rates of our algorithms

Map Kmax RSOD LLPP LLTP

Random
2 0.87 558.3± 518.52 1.62± 2.04
4 0.94 887.06± 800.33 1.94± 3.35
8 0.97 577.93± 923.68 21.87± 43.73

Warehouse
2 0.96 146.45± 89.51 0.32± 0.58
4 0.91 171.21± 120.63 0.12± 0.10
8 0.86 261.75± 246.46 0.14± 0.12

Room
2 0.66 2392.46± 1230.56 1.67± 1.11
4 0.65 2130.81± 1187.86 170.67± 284.33
8 0.64 1636.83± 995.56 63.53± 69.01

Game
2 1.0 87.49± 26.52 0.00± 0.00
4 1.00 109.80± 52.05 0.00± 0.00
8 1.00 40.30± 13.56 0.00± 0.00

Table 1: RSOD and average number of LLPP/LLTP searches
±2×Standard Error over all solved instances using LT-
CBSH-RCT.

against those of MT-CBS on our 4 grid-based maps in Fig-
ure 5. LT-CBS has a significant advantage over MT-CBS on
some maps and is never worse on the other maps. The power
of symmetry breaking is made clear by the success rate of
LT-CBSH-RCT over that of LT-CBS. The power of relax-
ation is demonstrated by LT-CBSH-RCT−, whose success
rate is usually very close to LT-CBSH-RCT, although there
is a notable difference on the room map. This shows that
we do not need to use train planning that often. The main
drawback of LT-CBSH-RCT− is its incompleteness: If the
returned plan is not a valid MTPF plan, it reports failure,
even if a valid MTPF plan exists.

Table 1 reports the average number of LLPP and LLTP
searches and the ratio of the instances solved by resolving
only ∆-delay conflicts (RSOD) over all solved instances us-
ing LT-CBSH-RCT. First of all, LLTP is used on most of the
maps, indicating that resolving head occupation or self con-
flicts is needed. LT-CBSH-RCT has high RSOD and barely
uses LLTP for most of the solved instances on the warehouse
and game maps. However, on the random and room maps,
it requires more LLTP searches, indicating that there exist
more head occupation or self conflicts that are not ∆-delay
conflicts on these two maps.

Furthermore, we count the average number of nodes ex-
panded per low-level search for MT-CBS and LT-CBS. MT-
CBS expanded 355 nodes per search and LT-CBS expanded
180 nodes per search, which shows LLTP is more expensive
than LLPP.

MTPF Variant 2 on Simplified Railway Systems
Figure 6b shows an example Flatland instance. The map
contains several cities connected by rails. Each city has a sta-
tion that provides off-map parking: before trains begin and
after they reach their goal vertices. Each station can be the
start or goal vertex for multiple trains. A departure timetable
specifies the earliest timestep di when a train ai can enter
the map and leave its start station. If train ai has the small-
est ID over all trains departing from the same station, then
it can enter the map at or after timestep di = 1. The train
aj with the next largest ID can enter the map at or after



Figure 5: Success rates of four algorithms to MTPF Variant 1 on four grid-based maps with agents of varying body lengths.

(a) Success rate. (b) Railway system.

Figure 6: Success rates of three algorithms to MTPF Variant
2 on railway systems with trains of varying body lengths.

timestep dj = di + ki + 1. The same rules apply for later
trains. We use the simulator generator with a random seed
varying from 1 to 25 to generate two sets of 25 instances.
The first set uses 50× 50 grids with a maximum of 8 cities,
denoted small railways, and the second set uses 100 × 100
grids with a maximum of 20 cities, denoted large railways.
In both cases, the generator creates at most 2 rails between
cities and 3 rails inside cities.

Figure 6a shows the success rates of LT-CBS, LT-CBSH-
RC−, and LT-CBSH-RC. We exclude Target conflict reason-
ing as they are impossible in Variant 2. Here, LT-CBSH-
RC overlaps with LT-CBSH-RC−, both of which are sig-
nificantly better than LT-CBS. This indicates that we sel-
dom meet occupation or self conflicts in the solved instances
(although they could still happen in general). Again, sym-

Figure 7: Success rates of two algorithms to MTPF Variant
3 on the room map with agents of the same body length k.

metry reasoning helps to solve more instances. Increasing
the map size brings limited extra traversable spaces but in-
creases travel distance. Thus, all algorithms achieve higher
success rates in small railways.

MTPF Variant 3 with Long Agents
We study the influence of parking conflicts on the room map.
This map contains many narrow doorways where agents can
park and block other agents. All agents have the same length
k, and the number of agents is set to 6, 8, and 10. As shown
in Figure 7, parking conflicts can not be resolved efficiently
by LT-CBSH-RCT. Meanwhile, LT-CBSH-RCTP, where P
indicates parking conflicts reasoning, solves more instances
within the given runtime limit.

Conclusion
In this paper, we showed that k-Robust MAPF (kR-MAPF)
is a strict relaxation of Multi-Train Path Finding (MTPF).
To achieve this result, we first extended kR-MAPF to al-
low for agents with varying robustness. We then proposed



Lazy Train CBS (LT-CBS), a new optimal MTPF algo-
rithm which can often replace expensive Low-Level Train
Planning (LLTP) with much less expensive Low-Level Path
Planning (LLPP). This change allows LT-CBS to solve sub-
stantially more problems in the same amount of time than
MT-CBS, a state-of-the-art MTPF planner from the recent
literature. To improve LT-CBS further, we introduced a num-
ber of generalized symmetry-breaking techniques. This in-
cludes resolution strategies for rectangle, corridor and target
symmetries, which had previously been considered only for
MAPF and kR-MAPF with varying robustness, as well as
newly identified parking symmetry conflicts, which only oc-
cur in MTPF. Together, these changes improve the efficiency
of state-of-the-art MTPF algorithms substantially.

Future research will focus on other kinds of symmetries
that arise in MTPF, e.g., two agents traversing a wide cor-
ridor in the same direction but their paths intersect. We
will also overcome the issue that current rectangle reason-
ing sometimes cannot remove all collision plans in one split
to guarantee optimality.

Acknowledgments
The research at Monash University was partially sup-
ported by the Australian Research Council under grants
DP190100013 and DP200100025 as well as a gift from
Amazon. The research at the University of Southern Califor-
nia was partially supported by the National Science Foun-
dation under grant 1409987, 1724392, 1817189, 1837779,
1935712, and 2112533 as well as a gift from Amazon. The
views and conclusions contained in this document are those
of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the spon-
soring organizations, agencies, or the U.S. government.

References
Atzmon, D.; Diei, A.; and Rave, D. 2019. Multi-Train Path
Finding. In Proceedings of the Annual Symposium on Com-
binatorial Search (SoCS), 125–129.
Atzmon, D.; Stern, R.; Felner, A.; Wagner, G.; Barták, R.;
and Zhou, N.-F. 2018. Robust Multi-Agent Path Finding.
In Proceedings of the Annual Symposium on Combinatorial
Search (SoCS), 2–9.
Boyarski, E.; Felner, A.; Stern, R.; Sharon, G.; Tolpin, D.;
Betzalel, O.; and Shimony, S. E. 2015. ICBS: Improved
Conflict-Based Search Algorithm for Multi-Agent Pathfind-
ing. In Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI), 740–746.
Cacchiani, V.; Qi, J.; and Yang, L. 2020. Robust Opti-
mization Models for Integrated Train Stop Planning and
Timetabling with Passenger Demand Uncertainty. Trans-
portation Research Part B: Methodological, 136: 1–29.
Chen, Z.; Harabor, D.; Li, J.; and Stuckey, P. J. 2021. Sym-
metry Breaking for k-Robust Multi-Agent Path Finding. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence (AAAI), 12267–12274.
Felner, A.; Li, J.; Boyarski, E.; Ma, H.; Cohen, L.; Kumar,
T. S.; and Koenig, S. 2018. Adding Heuristics to Conflict-
Based Search for Multi-Agent Path Finding. In Proceedings

of the International Conference on Automated Planning and
Scheduling (ICAPS), 83–87.
Laurent, F.; Schneider, M.; Scheller, C.; Watson, J.; Li, J.;
Chen, Z.; Zheng, Y.; Chan, S.-H.; Makhnev, K.; Svidchenko,
O.; Egorov, V.; Ivanov, D.; Shpilman, A.; Spirovska, E.;
Tanevski, O.; Nikov, A.; Grunder, R.; Galevski, D.; Mitro-
vski, J.; Sartoretti, G.; Luo, Z.; Damani, M.; Bhattacharya,
N.; Agarwal, S.; Egli, A.; Nygren, E.; and Mohanty, S. 2021.
Flatland Competition 2020: MAPF and MARL for Efficient
Train Coordination on a Grid World. In Proceedings of the
NeurIPS 2020 Competition and Demonstration Track, 275–
301.
Li, J.; Gange, G.; Harabor, D.; Stuckey, P. J.; Ma, H.; and
Koenig, S. 2020. New Techniques for Pairwise Symmetry
Breaking in Multi-Agent Path Finding. In Proceedings of
the International Conference on Automated Planning and
Scheduling (ICAPS), 193–201.
Li, J.; Harabor, D.; Stuckey, P. J.; Felner, A.; Ma, H.; and
Koenig, S. 2019a. Disjoint Splitting for Multi-Agent Path
Finding with Conflict-Based Search. In Proceedings of
the International Conference on Automated Planning and
Scheduling (ICAPS), 279–283.
Li, J.; Harabor, D.; Stuckey, P. J.; Ma, H.; Gange, G.; and
Koenig, S. 2021. Pairwise Symmetry Reasoning for Multi-
Agent Path Finding Search. Artificial Intelligence, 301:
103574.
Li, J.; Harabor, D.; Stuckey, P. J.; Ma, H.; and Koenig,
S. 2019b. Symmetry-Breaking Constraints for Grid-Based
Multi-Agent Path Finding. In Proceedings of the AAAI Con-
ference on Artificial Intelligence (AAAI), 6087–6095.
Lusby, R. M.; Larsen, J.; Ehrgott, M.; and Ryan, D. 2011.
Railway Track Allocation: Models and Methods. OR Spec-
trum, 33(4): 843–883.
Mokhtar, H.; Krishnamoorthy, M.; Dayama, N. R.; and Ku-
mar, P. R. 2020. New Approaches for Solving the Convoy
Movement Problem. Transportation Research Part E: Lo-
gistics and Transportation Review, 133: 101802.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-Based Search for Optimal Multi-Agent Pathfind-
ing. Artificial Intelligence, 219: 40–66.
Singh, A.; Gong, C.; and Choset, H. 2018. Modelling and
Path Planning of Snake Robot in Cluttered Environment.
In International Conference on Reconfigurable Mechanisms
and Robots (ReMAR), 1–6.
Stern, R.; Sturtevant, N. R.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T. T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T. S.;
et al. 2019. Multi-Agent Pathfinding: Definitions, Variants,
and Benchmarks. In Proceeding of the Annual Symposium
on Combinatorial Search (SoCS), 151–158.
Takemori, T.; Tanaka, M.; and Matsuno, F. 2018. Gait
Design for a Snake Robot by Connecting Curve Segments
and Experimental Demonstration. IEEE Transactions on
Robotics, 34(5): 1384–1391.
Yang, L.; Qi, J.; Li, S.; and Gao, Y. 2016. Collaborative
Optimization for Train Scheduling and Train Stop Planning
on High-Speed Railways. Omega, 64: 57–76.


