

Artificial Intelligence for Robot Coordination at Scale **Director:** Jiaoyang Li PhD Students: Philip, Yulun, Jingtian, Yorai, Rishi, Yutong Masters: He (Rivers) August 22, 2024

Overview

- We focus on developing fundamental algorithms that enable large teams of autonomous agents to accomplish collaborative tasks intelligently in dynamic environments.
- Areas of interest:
 - Large-scale multi-agent path finding (MAPF) and coordination
 - Integrated task and motion planning
 - Integrated planning and execution under uncertainty
 - Learning-guided planning

Philip's Research

Using Multiple Robot Arms for Assembly

- Larger Workspace
- Increased Throughput
- More complex collaboration tasks

Area of Research

- Assembly Sequence Planning
- Task Planning and Assignment
- Efficient Multi-Arm Motion Planning
- Safe Execution and Plan Repair

Yulun's Research

Good multi-robot system

MAPF Algo

Environment

Key takeaway: Optimizing environments in which MAPF algorithms operate significantly improves performance of multi-robot systems.

Layout Optimization

Virtual

guidance

Physical

Layout

• Integration with manipulation policy Example Demonstration: Building Legos with Two Arms

Yorai's Research

Are Multiple Robot Arms Better Than One?

- Yes: enable autonomy in new tasks (e.g., collaborative assembly).
- Yes: solve tasks more efficiently than a single arm could.
- Maybe: effective algorithms are still being developed.

Active Areas of Research

- 1. Multi-arm motion planning.
- 2. Multi-arm task-and-motion-planning.

Jingtian's Research

Motivation

Finding collision-free trajectory for large-scale multi-robot system considering their dynamics and kinematics

- State-of-art MAPF methods shows scalability in finding paths for thousands of agents.
- Real robots are limited by dynamics and kinematics constraints.

3. Data driven collaborative manipulation.

Yutong's Research (Visiting PhD Student)

Can we learn a decentralized policy shared by all agents based on partial observation to plan paths step by step?

How to use the learned policy?

1. Directly apply the policy to MAPF tasks. 2. Combine the policy with search-based algorithms to complement each other's weaknesses and make 1+1>2.

Rishi's Research

Faster, Better, Scalable Algorithms

• Apply MAPF methods to real robots.

River's Research

Large-Scale MAPF Planning • We won an international MAPF competition with up to 10,000 agents! Massachusetts Institute of Technology MONASH University of USC University of Southern California amazonrobotics Grand Prize

MAPF Execution under Delays

• How to replan fast online to handle unexpected delays? Optimize the Action Dependency Graph!

- How can we plan for 100s-1000s of

agents?

Leveraging Machine Learning with Heuristic Search

- How can we boost learnt policies using search?
- **Towards Realistics Multi-Agents** Systems
- How can we effectively plan for
- non-2D complex agent groups?

