
Nested ECBS for Bounded-Suboptimal Multi-Agent Path Finding

Shao-Hung Chan1 , Jiaoyang Li1 , Daniel Harabor2 , Peter J. Stuckey2 ,
Graeme Gange2 , Liron Cohen1 , Sven Koenig1

1University of Southern California, USA
2Monash University, Australia

{shaohung,jiaoyanl}@usc.edu, {daniel.harabor,peter.stuckey,graeme.gange}@monash.edu,
{lironcoh,skoenig}@usc.edu

Abstract
Multi-Agent Path Finding (MAPF) is the problem of
finding collision-free paths for multiple agents on a map.
Conflict-Based Search (CBS) is a powerful, complete,
and optimal MAPF solver, while Enhanced CBS (ECBS)
improves the efficiency of CBS by only guaranteeing a
bounded-suboptimal solution. Both MAPF solvers suf-
fer from the weakness of repeatedly resolving the same
collisions between the same agents. Merging agents into
meta-agents and planing their paths in the joint state
space can be used to overcome this problem. However,
a joint-state-space MAPF solver makes resolving colli-
sions within meta-agents inefficient. In this paper, we
therefore propose Nested ECBS (NECBS), a nested ar-
chitecture based on ECBS, where collisions within meta-
agents are resolved with ECBS. NECBS preserves the
important properties of ECBS, namely its completeness
and bounded-suboptimality. Empirically, NECBS has a
higher success rate than ECBS and its state-of-the-art
variants for a runtime limit of 5 minutes.

1 Introduction
Multi-Agent Path Finding (MAPF) is the problem of finding
collision-free paths for multiple agents moving on a map. A
common objective of MAPF is to minimize the sum of the
travel times of the agents. MAPF has many real-world appli-
cations, such as autonomous aircraft-towing vehicles [Morris
et al., 2016], office robots [Veloso et al., 2015], video game
characters [Ma et al., 2017], and quadrotor swarms [Hönig et
al., 2018]. We will discuss the problem definition of MAPF in
Section 2. Conflict-Based Search (CBS) [Sharon et al., 2015]
is a successful MAPF solver for solving MAPF optimally in
low-contention environments. CBS optimistically plans paths
for agents independently and resolves collisions using best-
first search in the space of collision resolutions. However,
CBS and its variants run into difficulties when multiple sets
of agents collide frequently with one another, which leads to
resolving the same collisions between the same agents repeat-
edly. We call this issue the repeated replanning problem. We
will discuss some existing MAPF solvers and their limitations
in Section 3

Consider the MAPF instance in Figure 1. The agents on the
left (a1 and a2) must coordinate the use of the narrow vertical

Figure 1: An illustrative 4-agent MAPF instance. Each start vertex
si of agent ai is shown as a solid circle, while its goal vertex gi is
shown as a hollow circle in the same color.

corridor {A2,B2,C2,D2}. One of them must take a delay of
at least 4 timesteps at its start vertex in order to avoid col-
liding with the other one. Similarly, one of the agents on the
right (a3 or a4) must take a delay of at least 4 timesteps. How-
ever, without dedicated corridor reasoning techniques [Li et
al., 2020], CBS cannot discover this issue immediately and
instead must investigate many paths with delays of fewer than
4 timesteps, eventually concluding that delays of 4 timesteps
are inevitable to avoid collisions.

One successful MAPF solver for preventing agents from
frequently colliding with one another is Enhanced CBS
(ECBS) [Barer et al., 2014], which uses focal search [Pearl
and Kim, 1982] to find bounded-suboptimal collision-free
paths. As long as the bound is sufficiently loose, ECBS can
quickly find collision-free paths where agents are allowed to
take some delays, as it does not have to prove that solutions
of lower costs do not exist. In Figure 1, for example, ECBS
can speed up the search by delaying either agent a1 or agent
a2 and by delaying either agent a3 or agent a4 within a user-
specified bound. However, if the bound is not sufficiently
loose, the repeated replanning problem remains a weakness
of ECBS.

Another MAPF solver for preventing agents from fre-
quently colliding with one another is Meta-Agent CBS (MA-
CBS) [Sharon et al., 2015], which merges a set of agents after
observing that the agents in the set collide repeatedly with one
another and then treats them as one meta-agent. In the exam-

Figure 2: Relationships between CBS-related MAPF solvers. Ar-
rows in the same color correspond to the same improvements. Our
contributions include extending the merging technique from CBS
to ECBS, resulting in Meta-Agent ECBS (MA-ECBS) and using
ECBS to resolve the collisions between agents within the same
meta-agent, resulting in Nested ECBS (NECBS).

ple of Figure 1, after we have resolved the collision between
agents a1 and a3 in the horizontal corridor {D3,D4,D5},
merged agents a1 and a2 into one meta-agent, and merged
agents a3 and a4 into another meta-agent, we have essentially
solved the repeated replanning problem since we can resolve
the collisions between the agents in each meta-agent indepen-
dently. Merging agents a1 and a2 allows for their coordina-
tion with respect to vertical corridor {A2,B2,C2,D2}, while
merging agents a3 and a4 does the same for vertical corri-
dor {A6,B6,C6,D6}. Since the collision-free paths of all
agents in each meta-agent are planned optimally, MA-CBS
is guaranteed to find optimal collision-free paths. We ex-
tend the merging technique to ECBS and present the resulting
bounded-suboptimal MAPF solver MA-ECBS in Section 4.
However, both MA-CBS and MA-ECBS resolve the colli-
sions between all agents in the same meta-agent via a joint-
state-space MAPF solver, which finds collision-free paths by
viewing the state space as the cross-product of the possible
vertices of each agent. The size of the resulting search space
grows exponentially in the number of agents, which makes
planning intractable for meta-agents containing many agents.

We thus propose Nested ECBS (NECBS), which is a
bounded-suboptimal MAPF solver that combines ECBS and
MA-ECBS to address the repeated replanning problem. It
uses MA-ECBS but resolves the collisions between the agents
in the same meta-agent with ECBS instead of the joint-state-
space MAPF solver, thus combining two MAPF solvers to
improve the efficiency of ECBS, while still being bounded-
suboptimal (discussed in Section 5). The relationships among
the various CBS-related MAPF solvers are shown in Figure
2. We also use techniques such as restarting the search right
after merging agents, known as Merge and Restart (MR) [Bo-
yarski et al., 2015], to improve the efficiency even further.
Our empirical results in Section 7 show that NECBS has a
higher success rate than ECBS. Furthermore, they show that
NECBS with MR (NECBS (MR)) has a 2.75% higher success
rate than ECBS (RR), a state-of-the-art version of ECBS, for
a runtime limit of 5 minutes.

2 Problem Definition
While there exist a variety of definitions for Multi-Agent Path
Finding (MAPF), we use the one in [Stern et al., 2019]. The
MAPF problem consists of an undirected graph G = (V,E)
and a set of k agents {a1, . . . ,ak}. Each agent ai has a unique
start vertex si ∈ V and a unique goal vertex gi ∈ V . Time is
discretized into timesteps, starting at 0. At every timestep, an
agent is allowed to either move to an adjacent vertex or wait
at its current vertex. Also, an agent continues to exist after it
has reached its goal vertex.

A path pi starting at start vertex si and ending at goal ver-
tex gi is a sequence of vertices indicating where agent ai is at
each timestep. In addition, any two adjacent vertices on path
pi are either adjacent in G, meaning that agent ai moves, or
identical, meaning that agent ai waits. The cost of path pi is
its length, that is, the number of timesteps needed by agent
ai to move from vertex si to vertex gi, ignoring the timesteps
when agent ai terminally waits at vertex gi. A collision (or,
equivalently, conflict) between two agents belongs to one of
two categories. It can be a vertex conflict 〈ai,a j,v, t〉, where
agents ai and a j occupy the same vertex v ∈ V at the same
timestep t. It can also be an edge conflict 〈ai,a j,u,v, t〉, where
agents ai and a j traverse the same edge (u,v) ∈ E in opposite
directions from timestep t to timestep t + 1. A solution is a
set of conflict-free paths, one for each agent. An optimal so-
lution is a solution with minimum sum of the costs (SoC) of
the paths. In this paper, all graphs are 4-neighbor grids with
vertices corresponding to the unblocked cells and edges cor-
responding to the connections between adjacent unblocked
cells in the four main compass directions.

3 Existing MAPF Solvers
In this section, we present Conflict-Based Search (CBS), En-
hanced CBS (ECBS), and Meta-Agent CBS (MA-CBS). All
of them rely on a two-level architecture where the low level
plans paths for single agents and the high level resolves con-
flicts between agents.

3.1 Conflict-Based Search (CBS)
Before introducing CBS [Sharon et al., 2015], we define con-
straints, that are used to resolve conflicts between two agents.
A vertex conflict 〈ai,a j,v, t〉 can be resolved by prohibiting ei-
ther agent ai or agent a j from occupying vertex v at timestep t,
resulting in vertex constraints 〈ai,v, t〉 and 〈a j,v, t〉. Similarly,
an edge conflict 〈ai,a j,u,v, t〉 can be resolved by prohibiting
agent ai from traversing the edge from vertex u to vertex v
from timestep t to timestep t +1 or prohibiting agent a j from
traversing the edge from vertex v to vertex u from timestep t
to timestep t +1, resulting in edge constraints 〈ai,u,v, t〉 and
〈a j,v,u, t〉.

On the low level, CBS views vertex v ∈ V and timestep t
as a spatio-temporal node n = (v, t) and runs A* to find an
optimal path for each agent ai that satisfies the vertex and
edge constraints provided by the high level. To this end, the
low-level search uses an open list OPEN and sorts the spatio-
temporal nodes in OPEN in increasing order of their f values
f i(n) = gi(n)+hi(n), where gi(n) is the number of timesteps
for agent ai to move from its start vertex si to vertex v and

hi(n) is an admissible heuristic that estimates the cost from
vertex v to its goal vertex gi. The low-level search breaks ties
in favor of paths that have the fewest number of conflicts with
the paths of other agents.

On the high level, CBS generates a binary constraint tree
(CT). Each CT node N has two components: (1) a set N.paths
of paths for all agents generated by the low-level search,
with the path of agent ai being N.paths[i] and its cost being
|N.paths[i]|, and (2) a set N.constraints of vertex and edge
constraints that coordinate agents to avoid conflicts. The cost
N.cost of CT node N is the SoC of N.paths, that is,

N.cost =
k

∑
i=1
|N.paths[i]|. (1)

CBS runs a best-first search on the high level by selecting the
CT node with the optimal N.cost. It begins the search at the
root CT node, that contains an optimal path for each agent
and an empty set of constraints. While expanding CT node
N, if there are no conflicts among the paths of CT node N,
CBS returns the solution consisting of the paths of CT node
N and terminates. Otherwise, it picks one of the conflicts and
resolves it by branching, also known as splitting CT node N
into two child CT nodes. In each child CT node, CBS adds
a vertex or edge constraint for one of the conflicting agents
to prohibit it from utilizing the conflicted vertex or edge, re-
spectively, at the conflicted timestep. It then performs a low-
level search to replan the path of the agent with the added
constraint and leaves all other paths unchanged. CBS solves
MAPF optimally by performing best-first searches on both
levels.

3.2 Enhanced CBS (ECBS)
Enhanced CBS (ECBS) [Barer et al., 2014] uses focal search,
rather than best-first search, on both the high and low levels to
speed up CBS significantly and provide bounded-suboptimal
solutions. On the low level, given a CT node N, ECBS uses
an open list OPEN and sorts its spatio-temporal nodes n in
increasing order of their f values f i

1(n), which is identical to
function f i(n) of CBS, to find a path for agent ai. Let best i be
the node n with the minimum f i

1(n) value in OPEN and w be
the user-specified suboptimality factor. The low-level focal
search also uses a focal list FOCAL that contains all spatio-
temporal nodes n = (v, t) in OPEN with f i

1(n)≤ w · f i
1(best i).

The nodes in FOCAL are sorted in increasing order of their
different f values f i

2(n), where f i
2(n) specifies the number

of conflicts of the path of agent ai with the paths of other
agents in N.paths while agent ai moves from its start vertex
si to vertex v. The low-level focal search expands a node n
with the minimum f i

2(n) value in FOCAL. Since f i
1(n) uses

an admissible heuristic, f i
1(best i) is a lower bound on the cost

of the optimal path of agent ai. Thus, the low-level focal
search always returns a path for agent ai with a cost of at
most w times the optimal path cost c∗i , meaning that,

f i
1(best i)≤ |N.paths[i]|≤ w · f i

1(best i)≤ w · c∗i . (2)

The low-level focal search also returns lower bound N.lb[i] on
the cost of the optimal path for agent ai, which is the f i

1(best i)
value when the low-level search terminates.

Figure 3: A CT for solving the MAPF instance in Figure 1 with
CBS.

On the high level, ECBS runs a focal search on the CT.
Given a CT node N, we define its lower bound as N.LB =
∑

k
i=1 f i

1(best i). We define the number of conflicts between all
pairs of paths in CT node N as f2(N). Let LB = min(N.LB |
N ∈ OPEN). Since N.LB is a lower bound on the minimum
SoC of the solutions below CT node N, LB is a lower bound
on the minimum cost, denoted as C∗. The high-level focal
search sorts the CT nodes N in OPEN in increasing order
of N.LB and adds the CT nodes N with costs of at most w ·
LB into FOCAL, where w is the same suboptimality factor
as used on the low level. ECBS expands the CT node with
the minimum f2 value in FOCAL, namely the CT node with
the fewest number of conflicts. Given a MAPF instance with
minimum cost C∗, since ECBS only selects CT nodes whose
costs are at most w ·LB and LB≤C∗, it finds a solution whose
cost is at most w ·C∗, that is,

LB≤ N.cost ≤ w ·LB≤ w ·C∗. (3)

A larger suboptimality factor w or an increase of the lower
bound LB during the search typically result in more CT nodes
being added to FOCAL, which increases the chance of find-
ing a CT node that contains conflict-free paths, that is, so-
lutions. Thus, given a suboptimality factor, the lower-bound
improvement provides a clue about the efficiency of bounded-
suboptimal MAPF solvers. We define the lower-bound im-
provement as

LB Improvement = L̂B−NR.LB, (4)

where NR is the root CT node, NR.LB is the lower bound LB
in the beginning of the search, and L̂B is the LB value once a
solution has been found.

3.3 Limitations of CBS and ECBS
One of the limitations of CBS and ECBS is the repeated
replanning problem. When (E)CBS branches on one con-
flict and that does not resolve a different conflict as well,
it will potentially have to resolve that different conflict in
both subtrees. Hence, (E)CBS can resolve the same conflicts
many times and consequently repeat a lot of work in differ-
ent branches of the CT. Consider the MAPF instance shown
in Figure 1. One of the possible CTs generated by CBS is
shown in Figure 3. The search can be divided into 3 parts:
resolving conflicts between agents a1 and a3 in the horizontal
corridor {D3,D4,D5}, resolving conflicts between agents a1
and a2 in the vertical corridor {A2,B2,C2,D2}, and resolv-
ing conflicts between agents a3 and a4 in the vertical corridor

{A6,B6,C6,D6}. Each conflict resolution results in a subtree
drawn in orange, blue, and green, respectively. Some subtrees
are simplified as triangles. Each subtree has the following
components:

• Each solid-border rectangle with a vertex or edge con-
straint is an intermediate CT node with the constraint
added to the CT node in order to resolve the conflict
shown next to it. The part of the tree between the inter-
mediate CT nodes and the leaf CT nodes are not shown.

• Each solid-border square with “+x” is a leaf CT node of
the subtree in the same color. (It is also the root CT node
of the subtree below it.) It contains paths in which the
conflicts corresponding to its subtree have been resolved
optimally. The value x indicates that the cost of the leaf
CT node is x larger than the cost of the root CT node of
its subtree.

• Each solid-border square with “...” contains (multiple)
leaf CT nodes. It contains paths in which the conflicts
corresponding to its subtree have been resolved subopti-
mally.

• Each dashed-border rectangle contains the paths of the
root CT node of the subtree in the same color. The con-
flicts are highlighted in the same color.

The high-level search in Figure 3 proceeds as follows:
CBS first chooses conflict 〈a1,a3,D4,6〉 at the root CT node
and branches accordingly. The CT nodes in which all con-
flicts between agents a1 and a3 in the horizontal corridor
{D3,D4,D5} have been resolved are shown as the left-most
and right-most orange squares. Both of their costs increase
by 3 with respect to the root CT node. Then, due to the fact
that CBS always selects the CT node in OPEN with the mini-
mum cost, CBS expands the blue and green subtrees rooted at
the orange “+3” CT nodes simultaneously. Finally, since the
paths of agents a3 and a4 of every blue “+4” CT node have
conflicts, CBS has to resolve all conflicts between agents a3
and a4 in every blue “+4” CT node, resulting in many green
subtrees. CBS also has to perform repeated work for each
green “+4” CT node, resulting in many blue subtrees. ECBS
can reduce the sizes of the subtrees in two ways: (1) The
low-level focal search can resolve some of the conflicts by
finding bounded-suboptimal paths for the agents, leaving the
high level fewer conflicts to resolve; and (2) the high-level
focal search can avoid expanding CT nodes as long as their
costs are within the suboptimality bound. However, the effec-
tiveness of both ways depends on whether the suboptimality
factor w is sufficiently large. In general, the smaller w is, the
more likely the repeated replanning problem occurs.

Independence detection (ID) [Standley, 2010] can avoid
the repeated replanning problem in some cases. Two sets
of agents are independent if and only if there exists an op-
timal solution for each set of agents such that the paths in
the two solutions do not conflict [Sharon et al., 2015]. ID at-
tempts to identify independent sets of agents and decompose
a MAPF instance into several sub-instances, one for each set
of agents. In Figure 1, agents a1 and a3 collide with one an-
other in the horizontal corridor {D3,D4,D5}. If their goal
vertices g1 and g3 were swapped, then ID could decompose

the MAPF instance into two sub-instances, namely the one
on the left with agents a1 and a2 and the one on the right
with agents a3 and a4, which would speed up the search since
both MAPF sub-instances can be solved separately instead
of jointly. However, as the number of agents increases in a
MAPF instance, the likelihood of finding independent sets of
agents drops rapidly and ID becomes less helpful.

3.4 Meta-Agent CBS (MA-CBS) and the Merging
Technique

CBS is inefficient for agents that conflict repeatedly when the
high-level search tries to resolve their conflicts. The moti-
vation behind Meta-Agent CBS (MA-CBS) [Sharon et al.,
2012; Sharon et al., 2015] is to avoid the resulting repeated
replanning problem. MA-CBS groups the agents that con-
flict repeatedly with one another into a meta-agent and plans
conflict-free paths for them in their joint state space, which is
known as the merging technique. We define a meta-agent as
a set of agents, and the size of the meta-agent as the number
of agents in it. Conflicts between the agents in a meta-agent
are called the internal conflicts of the meta-agent and are re-
solved by a joint-state-space MAPF solver when the meta-
agent is created. In contrast, conflicts between the agents
in different meta-agents are called external conflicts between
the meta-agents and are resolved by the high-level search.
Specifically, we say that meta-agents Am and An have a vertex
conflict 〈Am,An,v, t〉 or an edge conflict 〈Am,An,u,v, t〉 if and
only if there exist two agents ai ∈ Am and a j ∈ An that have
a vertex conflict 〈ai,a j,v, t〉 or an edge conflict 〈ai,a j,u,v, t〉,
respectively. MA-CBS uses a k× k matrix M to record the
number of conflicts between any two agents that have been
resolved so far. The meta-agents always form a partition of
the set of k agents, that is, Am∩An = φ .

In the beginning, MA-CBS contains k meta-agents, one for
each agent, and initializes M[ai][a j] with 0 for all agents ai
and a j. After having selected a CT node for branching, MA-
CBS chooses an (external) conflict, either a vertex conflict
〈Am,An,v, t〉 or an edge conflict 〈Am,An,u,v, t〉, and increases
both M[ai][a j] and M[a j][ai] by 1 for all agents ai ∈ Am and
agents a j ∈ An. MA-CBS uses a user-specified threshold b
to determine if two meta-agents are frequently conflicting. If
∑ai∈Am ∑a j∈An M[ai][a j] > b, then MA-CBS considers meta-
agents Am and An to be repeatedly conflicting and merges
them instead of branching, resulting in a new meta-agent
Am∪An. MA-CBS then resolves all internal conflicts of meta-
agent Am ∪An with a complete and optimal joint-state-space
MAPF solver, such as EPEA* [Goldenberg et al., 2014] or
M* [Wagner and Choset, 2011], and reinserts the CT node
into OPEN.

If MA-CBS does not merge meta-agents Am and An, then
it resolves the chosen conflict by branching. If the chosen
conflict is a vertex conflict, then MA-CBS adds meta-agent
vertex constraints 〈Am,v, t〉 and 〈An,v, t〉 to the two result-
ing child CT nodes, respectively, where 〈Am,v, t〉 represents
the set of vertex constraints 〈ai,v, t〉 for all agents ai ∈ Am
and 〈An,v, t〉 represents the set of vertex constraints 〈a j,v, t〉
for all agents a j ∈ An. Similarly, if the chosen conflict is an
edge conflict 〈Am,An,u,v, t〉, then MA-CBS adds meta-agent
edge constraints 〈Am,u,v, t〉 and 〈An,v,u, t〉 to the two result-

Figure 4: A CT for solving the MAPF instance in Figure 1 with
MA-CBS.

ing child CT nodes, respectively. Since both CBS (for re-
solving external conflicts of two meta-agents) and the joint-
state-space MAPF solver (for resolving internal conflicts of a
meta-agent) are complete and optimal, MA-CBS is also com-
plete and optimal. The advantage of MA-CBS over CBS is
that the internal conflicts of each meta-agent are resolved by
merging instead of branching, which avoids (part of) the re-
peated replanning problem and reduces the size of the CT.
For our example from Figure 1, if b = 3 and agents a1 and a2
are merged during the search of the left blue subtree, then the
blue subtrees below the right green subtree will not be gener-
ated since all internal conflicts between agents a1 and a2 have
been resolved. Similarly, agents a3 and a4 are merged during
the search of the right green subtree, and thus the green sub-
trees below the left blue subtree will not be generated. The
resulting CT is shown in Figure 4, where agents in the same
meta-agent are in the same color.

4 Meta-Agent ECBS (MA-ECBS)
Similar to combining CBS with the merging technique to
obtain an efficient optimal MAPF solver, we can also com-
bine ECBS with the merging technique to obtain an effi-
cient bounded-suboptimal MAPF solver, which we call MA-
ECBS. As long as the joint-state-space MAPF solver for re-
solving the internal conflicts of meta-agents is complete and
optimal, MA-ECBS provides the same suboptimality guaran-
tee as ECBS, meaning that the SoCs of its solutions continue
to be at most w times the optimal SoCs.

5 Nested ECBS (NECBS)
Since MA-ECBS finds only bounded-suboptimal solutions,
it is unnecessary to use an optimal joint-state-space MAPF
solver. For example, one can use ECBS instead of an optimal
joint-state-space MAPF solver to improve efficiency, result-
ing in Nested ECBS (NECBS). For convenience, we call the
ECBS that solves the whole MAPF instance the Outer ECBS,
and the ECBS that resolves internal conflicts of meta-agents
the Inner ECBS. Suppose NECBS is going to replan a meta-
agent Am in a CT node NO generated by Outer ECBS, Inner
ECBS resolves the internal conflicts of Am while satisfying
the constraints of CT node NO. Then, it passes the resulting
conflict-free paths and the lower bound NO.LBI [Am] to Outer
ECBS. We use the smallest lower bound of the CT nodes in
the open list OPENI of Inner ECBS when it terminates:

NO.LBI [Am] = min(NI .LB|NI ∈ OPENI). (5)

Figure 5: A CT for solving the MAPF instance in Figure 1 with
MA-CBS with MR after merging agents a1 and a2 into meta-agent
{a1,a2} and merging agents a3 and a4 into meta-agent {a3,a4}.

Given M meta-agents A1,A2, . . . ,AM whose sizes are all
greater than 1, we define the set of agents that are not in any of
these meta-agents as As = {a j | a j /∈ A1∪A2∪ . . .∪AM,1 ≤
j ≤ k}. We use the same user-specified suboptimality fac-
tor w for both Outer ECBS and Inner ECBS. Then, Inner
ECBS guarantees that the SoC of the paths of meta-agent Am
is bounded-suboptimal, that is,

∑
ai∈Am

|NO.paths[i]|≤ w ·NO.LBI [Am]. (6)

The low-level focal search of Outer ECBS guarantees that
the cost of the path of any agent a j ∈ As is also bounded-
suboptimal, meaning that

|NO.paths[j]| ≤ w ·NO.lbO[j], (7)

where NO.lbO[i] is the lower bound of agent ai at CT node
NO of Outer ECBS. Thus, the cost of CT node NO of Outer
ECBS satisfies the inequality:

NO.cost ≤ w
M

∑
m=1

NO.LBI [Am]+w ∑
a j∈As

NO.lbO[j]

= w ·NO.LBO, (8)

where NO.LBO =∑
M
m=1 NO.LBI [Am]+∑a j∈As NO.lbO[j] is the

lower bound of CT node NO.
Since Outer ECBS always selects CT nodes from its fo-

cal list FOCALO, the SoC of its solution is thus bounded
by w ·LBO, where LBO = min(NO.LBO | NO ∈ OPENO) and
OPENO is the open list of Outer ECBS. Also, the lower-
bound improvement of NECBS is based on Outer ECBS,
meaning that

LB Improvement = ˆLBO−NO
R .LBO, (9)

where NO
R is the root CT node of Outer ECBS, NO

R .LBO is the
lower bound LB in the beginning of its search, and ˆLBO is the
LBO value once a solution has been found by NECBS.

6 Restart Techniques
Restart techniques are effective for solving many combina-
torial problems [Ruan et al., 2002]. In MAPF, two restart
techniques have been explored, namely the Merge and Restart
(MR) and Rapid Random Restart (RR) techniques.

(a) Grid
32×32

(b) Maze
32×32

(c) Den520d
257×256

(d) Warehouse
84×170

Figure 6: Maps used in the experiments with their sizes given in the
form height×width.

The Merge and Restart (MR) [Boyarski et al., 2015] tech-
nique is an improvement of MA-CBS that further reduces
the size of the CT. The MR technique restarts the high-level
search at the root CT node after each merging while main-
taining all existing meta-agents. When two meta-agents are
merged, MA-CBS has already branched b+ 1 times on the
external conflicts between the two meta-agents. But with the
MR technique, the two meta-agents are already merged af-
ter the restart. Thus, the high-level search after the restart
never branches on the external conflicts between them, result-
ing in a smaller CT. For our example, Figure 5 shows the CT
after MA-CBS has merged agents a1 and a2 into one meta-
agent, merged agents a3 and a4 into another meta-agent, and
restarted the search. Since the MR technique affects neither
the high-level nor the low-level search, we can directly use
it in MA-ECBS, resulting in MA-ECBS (MR), and NECBS,
resulting in NECBS (MR). In the root CT node of MA-ECBS
(MR), we use the joint-state-space MAPF solver to plan for
meta-agents with sizes greater than 1. In the root CT node of
NECBS (MR), we use Inner ECBS to plan for meta-agents
with sizes greater than 1. We also propose ECBS with the
restart (R) technique, called ECBS (R). Once the number of
conflicts exceeds merge threshold b, ECBS (R) shuffles the
order of the agents and restarts the search (without merging
meta-agents). The order of the agents is important for find-
ing their paths in the root CT node. The agents planned later
in the order tend to take bounded-suboptimal detours in or-
der to minimize the number of conflicts with the paths of the
agents that have been planned earlier, which affects the num-
ber of conflicts in the root CT node and thus the runtime of
the search.

The Rapid Randomized Restart (RR) [Cohen et al., 2018]
technique, given the user-specified number of runs #Runs and
the runtime limit T (in seconds), restarts the search every

(a) Grid, w = 1.05 (b) Maze, w = 1.05

(c) Den520d, w = 1.01 (d) Warehouse, w = 1.01

Figure 7: Success rates of MA-ECBS and NECBS for the best merge
thresholds b on different maps.

(a) Grid, w = 1.05 (b) Maze, w = 1.05

(c) Den520d, w = 1.01 (d) Warehouse, w = 1.01

Figure 8: Success rates of MA-ECBS and NECBS for merge thresh-
old b = 1 on different maps.

T/#Runs seconds, each time shuffling the order of the agents
before the restart. We denote ECBS with the Rapid Random-
ized Restart technique as ECBS (RR). It is a state-of-the-art
bounded-suboptimal MAPF solver.

7 Empirical Evaluation
We compare our MA-ECBS and NECBS with other ECBS-
based MAPF solvers. As shown in Figure 6, the maps used
in our experiments are all 4-neighbor grids from the MAPF
benchmark suite [Stern et al., 2019], including a 32×32 grid
map with 20% blocked cells (Grid), a 32×32 grid map of a
maze with alley width 2 (Maze), a 257×256 grid map from

Maps
(#Instances, w) ECBS #Runs ECBS (RR) b ECBS (R) MA-ECBS MA-ECBS (MR) NECBS NECBS (MR)

Grid
(500, w = 1.05) 52.8

5 59.2 1 43.8 34.4 30.4 56.2 49.4

10 59.8 25 65.2 50 53 57.8 67

20 61.2 50 62.4 50.6 54.4 56.2 65.8

30 62.8 100 64.4 50.8 53.4 55.8 69.2

40 62.6 150 64 50.6 53.4 55.6 69

Maze
(250, w = 1.05) 42.8

5 47.6 1 38 26.4 25.2 43.2 41.6

10 48.8 25 48 38.4 38.8 44.4 52

20 50 50 50 38.8 40.4 43.6 53.2

30 48.8 100 49.6 40.8 41.2 44 52

40 49.6 150 49.6 40.4 43.2 44.4 52

Den520d
(250, w = 1.01) 77.2

5 70.8 1 54 47.2 44.4 74.8 46.8

10 51.2 25 71.2 66.4 78.4 78.8 43.4

20 50.8 50 77.2 67.6 78.4 79.2 85.6

30 56.4 100 75.2 67.6 77.6 78.4 84.8

40 67.2 150 74.4 67.6 79.2 78.4 84.4

Warehouse
(250, w = 1.01) 73.6

5 60.4 1 43.6 47.2 42 67.2 47.6

10 49.6 25 67.6 70.8 75.2 71.2 80.4

20 42 50 68.8 70.8 75.6 70.4 76.4

30 54 100 70 72 73.6 72.4 78

40 62 150 70.4 72.4 73.6 72 74

Overall (1250) 59.8 61.7 65.6 56.5 61.4 62.3 71.8

Table 1: Success rates (in percentages) of ECBS, ECBS (RR) with #Runs ∈ {5,10,20,30,40}, ECBS (R), MA-ECBS, MA-ECBS (MR),
NECBS, and NECBS (MR) with merge thresholds b ∈ {1,25,50,100,150}. The number of agents for the Grid map ranges from 10 to
100 in increments of 10. The number of agents for the Maze map ranges from 10 to 50 in increments of 10. The number of agents for the
Den520d and Warehouse maps ranges from 50 to 250 in increments of 50. The “Overall" in the bottom row is the average of the highest
success rates over the four maps, weighted by their number of MAPF instances. NECBS (MR) solves the most MAPF instances.

the video game Dragon Age: Origin (DAO) (Den520d), and
an 84× 170 grid map of an automated warehouse (Ware-
house). We use both the “even” and “random” scenarios
from the benchmark, which yield 50 MAPF instances for
each map and each number of agents. The costs between
pairs of start and goal vertices are distributed evenly in the
MAPF instances of the “even” scenarios. The start and goal
vertices are distributed randomly in the MAPF instances of
the “random” scenarios. Our main comparison metric is the
success rate, which is the percentage of the MAPF instances
solved within a runtime limit of 5 minutes. For the Grid and
Maze maps, which have small sizes but high obstacle den-
sities, we set the suboptimality factor to w = 1.05. For the
remaining two larger maps with more free space, w = 1.05 is
too large, resulting in all MAPF solvers having high success
rates and preventing us from distinguishing among them. For
the Den20d and Warehouse maps, we thus set w = 1.01.
We implement our MAPF solvers in C++ and run them on
servers with 2.80 GHz Intel Xeon Processors E5-2640 v4 and
2 GB RAM. Table 1 shows the success rates of ECBS, ECBS
(RR), ECBS (R), MA-ECBS, MA-ECBS (MR), NECBS, and

NECBS (MR) with different parameter settings. We discuss
these results in detail in the following sections.

7.1 Evaluation of the Merge Thresholds

We use a set of merge thresholds {1,25,50,100,150} and de-
fine the best merge threshold of a MAPF solver as the merge
threshold in the set that leads to the highest success rate.
To demonstrate the efficiency resulting from using different
MAPF solvers to resolve internal conflicts of meta-agents,
Figure 7 shows the success rates of MA-ECBS and NECBS
for their best merge thresholds. The results show that using a
joint-state-space MAPF solver like EPEA* (as used by MA-
ECBS) instead of Inner ECBS (as used by NECBS) for re-
solving internal conflicts is more time-consuming on small
maps with dense obstacles and thus results in smaller success
rates. When the merge threshold b is low, agents are merged
frequently, meaning that MAPF solvers are more frequently
used to resolve internal conflicts. Thus, the success rates of
MA-ECBS are much lower than the ones of NECBS when
b = 1, as shown in Figure 8.

(a) Grid, w = 1.05 (b) Maze, w = 1.05

(c) Den520d, w = 1.01 (d) Warehouse, w = 1.01

Figure 9: Success rates of MA-ECBS and MA-ECBS (MR) for the
best merge thresholds b on different maps.

(a) Grid, w = 1.05 (b) Maze, w = 1.05

(c) Den520d, w = 1.01 (d) Warehouse, w = 1.01

Figure 10: Success rates of NECBS and NECBS (MR) for the best
merge thresholds b on different maps.

7.2 Evaluation of the Restart Techniques
To demonstrate the efficiency resulting from the MR tech-
nique, we compare the success rates of MA-ECBS and MA-
ECBS (MR) and the success rates of NECBS and NECBS
(MR). Figure 9 shows the success rates of MA-ECBS and
MA-ECBS (MR) for their best merge thresholds. Figure 10
shows the success rates of NECBS and NECBS (MR) for
their best merge thresholds. The results show that MAPF
solvers with the MR technique outperform those without the
MR technique.

Figure 11 shows the success rates of MAPF solvers with
different restart techniques, namely the RR, R, and MR tech-

(a) Grid, w = 1.05 (b) Maze, w = 1.05

(c) Den520d, w = 1.01 (d) Warehouse, w = 1.01

Figure 11: Success rates of MAPF solvers with different restart tech-
niques for the best merge thresholds b on different maps.

Figure 12: Success rates of NECBS (MR) and ECBS (R) for the
best merge thresholds b and increasing suboptimality factor w on
the Grid map.

(a) Runtime of NECBS (MR) and
ECBS (R).

(b) Number of generated CT
nodes by NECBS (MR) and
ECBS (R).

Figure 13: Results of NECBS (MR) and ECBS (R) for the best
merge thresholds b and suboptimality factor w = 1.05 on the Grid
map. In Subfigure (b), dots of different colors show MAPF instances
with different numbers of agents.

niques. These restart techniques result in ECBS (RR), ECBS
(R), MA-ECBS (MR), and NECBS (MR). The results show
that NECBS (MR) has higher success rates than the MAPF
solvers with other restart techniques.

(a) Grid w = 1.05 (b) Maze w = 1.05 (c) Den520d w = 1.01 (d) Warehouse w = 1.01
Figure 14: ∆LB Improvements of NECBS (MR) (top row) and ECBS (R) (bottom row) for the best merge thresholds on different maps. Green
circles are the solved MAPF instances, while red crosses are the unsolved ones.

7.3 Evaluation of Merging Agents
Since the difference between the MR and R techniques is
whether agents are merged, a comparison between NECBS
(MR) and ECBS (R) shows the effect of merging. We
use Grid MAPF instances where the number of agents
ranges from 10 to 100 in increments of 10. Figure 12
shows the success rates of NECBS (MR) and ECBS (R) for
their best merge thresholds and suboptimality factors w ∈
{1.02,1.05,1.10,1.15,1.20}. NECBS (MR) has higher suc-
cess rates than ECBS (R) when the suboptimality factor is
small. Both MAPF solvers reach a success rate of 100% once
the suboptimality factor increases to 1.2 because, as the sub-
optimality factor increases, both MAPF solvers have more
solutions to choose from. To show that NECBS (MR) out-
performs ECBS (R), we analyze the results from the MAPF
instances that are solved by both MAPF solvers with their
best merge thresholds. Figure 13a shows that NECBS (MR)
has a smaller runtime than ECBS (R) on MAPF instances that
are solved by both MAPF solvers. Furthermore, we compare
the number of CT nodes generated by both MAPF solvers.
In Figure 13b, we use a logarithmic scale for both axes. For
MAPF instances that are not solved within the runtime limit,
we set the number of CT nodes generated by the MAPF solver
to infinity. MAPF instances on the right side of the dashed
line are the ones that can be solved by NECBS (MR) with
fewer generated CT nodes than by ECBS (R). Figure 13b
shows that NECBS (MR) solves more MAPF instances with
fewer CT nodes than ECBS (R).

Let ∆LB Improvement be the difference of
LB Improvement between a given MAPF solver and
ECBS. Figure 14 shows the ∆LB Improvements of NECBS
(MR) and ECBS (R) for each MAPF instance. The MAPF
instances are sorted in increasing order of their number
of agents. The green circles represent the solved MAPF
instances, and the red crosses represent the unsolved MAPF
instances. As the number of agents increases, NECBS

(MR) solves more MAPF instances within the runtime
limit and has higher ∆LB Improvements than ECBS (R).
One of the reasons is target symmetry [Li et al., 2020],
which occurs when agent ai traverses goal vertex g j of
agent a j after agent a j has already reached g j and stayed
there. Resolving conflicts between agents ai and a j typically
results in paths of much higher costs than those of their
individual minimum-cost paths (ignoring other agents).
The MR technique takes target symmetry into account by
merging agents and replanning paths for all agents within a
meta-agent with Inner ECBS, which has to increase its lower
bound substantially in order to find a solution within the
suboptimality bound. In contrast, ECBS (R) simply restarts
the search after randomly shuffling the order of the agents,
which does not handle target symmetry. Thus, NECBS (MR)
solves MAPF instances with higher ∆LB Improvements than
ECBS (R).

8 Conclusions
In this paper, we leveraged ideas from two MAPF solvers,
namely ECBS and MA-CBS. ECBS finds solutions whose
SoCs are guaranteed to be within a user-specified suboptimal-
ity factor, and MA-CBS is a variant of optimal CBS that uses
meta-agents to handle the repeated replanning problem. We
proposed MA-ECBS, which is a variant of ECBS that merges
agents into meta-agents and resolves the internal conflicts of
meta-agents with a joint-state-space MAPF solver. Further-
more, we proposed NECBS, which is a variant of ECBS that
not only merges agents into meta-agents but also resolves
the internal conflicts of meta-agents with ECBS. Based on
the Merge and Restart (MR) technique, we also proposed the
Restart (R) technique, that restarts the search without merging
(meta-)agents once the number of conflicts exceeds a given
threshold. Our experiments show that NECBS with the MR
technique has a higher success rate then the state-of-the-art
bounded-suboptimal MAPF solver ECBS with the RR tech-

nique.

9 Acknowledgement
The research at the University of Southern California was
supported by the National Science Foundation (NSF) under
grant numbers 1409987, 1724392, 1817189, 1837779, and
1935712 as well as a gift from Amazon. The views and con-
clusions contained in this document are those of the authors
and should not be interpreted as representing the official poli-
cies, either expressed or implied, of the sponsoring organiza-
tions, agencies, or the US government.

References
[Barer et al., 2014] Max Barer, Guni Sharon, Roni Stern,

and Ariel Felner. Suboptimal variants of the conflict-based
search algorithm for the multi-agent pathfinding problem.
In Proceedings of the 7th Annual Symposium on Combina-
torial Search (SoCS), pages 19–27, 2014.

[Boyarski et al., 2015] Eli Boyarski, Ariel Felner, Roni
Stern, Guni Sharon, David Tolpin, Oded Betzalel, and
Solomon Eyal Shimony. ICBS: Improved conflict-based
search algorithm for multi-agent pathfinding. In Proceed-
ings of the 24th International Joint Conference on Artifi-
cial Intelligence (IJCAI), pages 740–746, 2015.

[Cohen et al., 2018] Liron Cohen, Sven Koenig, T. K. Satish
Kumar, Glenn Wagner, Howie Choset, David Chan, and
Nathan Sturtevant. Rapid randomized restarts for multi-
agent path finding: Preliminary results. In Proceedings of
the 17th International Conference on Autonomous Agents
and Multi Agent Systems (AAMAS), page 1909–1911,
2018.

[Goldenberg et al., 2014] Meir Goldenberg, Ariel Felner,
Roni Stern, Guni Sharon, Nathan R. Sturtevant, Robert C.
Holte, and Jonathan Schaeffer. Enhanced partial expansion
A*. Journal of Artificial Intelligence Research, 50:141–
187, 2014.

[Hönig et al., 2018] Wolfgang Hönig, James A. Preiss,
T. K. Satish Kumar, Gaurav S. Sukhatme, and Nora Aya-
nian. Trajectory planning for quadrotor swarms. IEEE
Transactions on Robotics, 34(4):856–869, 2018.

[Li et al., 2020] Jiaoyang Li, Graeme Gange, Daniel Hara-
bor, Peter J. Stuckey, Hang Ma, and Sven Koenig. New
techniques for pairwise symmetry breaking in multi-agent
path finding. In Proceedings of the 30th International Con-
ference on Automated Planning and Scheduling (ICAPS),
pages 193–201, 2020.

[Ma et al., 2017] Hang Ma, Jingxing Yang, Liron Cohen,
T. K. Satish Kumar, and Sven Koenig. Feasibility study:
Moving non-homogeneous teams in congested video game
environments. In Proceedings of the 13th AAAI Confer-
ence on Artificial Intelligence and Interactive Digital En-
tertainment (AIIDE), pages 270–272, 2017.

[Morris et al., 2016] Robert Morris, Corina S. Pasareanu,
Kasper Søe Luckow, Waqar Malik, Hang Ma, T. K. Satish

Kumar, and Sven Koenig. Planning, scheduling and mon-
itoring for airport surface operations. In AAAI Workshop
on Planning for Hybrid Systems, 2016.

[Pearl and Kim, 1982] Judea Pearl and Jin H. Kim. Studies
in semi-admissible heuristics. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, PAMI-4(4):392–
399, 1982.

[Ruan et al., 2002] Yongshao Ruan, Eric Horvitz, and
Henry A. Kautz. Restart policies with dependence among
runs: A dynamic programming approach. In Proceed-
ings of the 8th International Conference on Principles
and Practice of Constraint Programming, page 573–586,
2002.

[Sharon et al., 2012] Guni Sharon, Roni Stern, Ariel Fel-
ner, and Nathan R. Sturtevant. Meta-agent conflict-based
search for optimal multi-agent path finding. In Pro-
ceedings of the 5th Symposium on Combinatorial Search
(SoCS), pages 39–40, 2012.

[Sharon et al., 2015] Guni Sharon, Roni Stern, Ariel Fel-
ner, and Nathan R. Sturtevant. Conflict-based search for
optimal multi-agent pathfinding. Artificial Intelligence,
219:40–66, 2015.

[Standley, 2010] Trevor Scott Standley. Finding optimal so-
lutions to cooperative pathfinding problems. In Proceed-
ings of the 24th AAAI Conference on Artificial Intelligence
(AAAI), pages 173–178, 2010.

[Stern et al., 2019] Roni Stern, Nathan R. Sturtevant, Ariel
Felner, Sven Koenig, Hang Ma, Thayne T. Walker,
Jiaoyang Li, Dor Atzmon, Liron Cohen, T. K. Satish
Kumar, Roman Barták, and Eli Boyarski. Multi-agent
pathfinding: Definitions, variants, and benchmarks. In
Proceedings of the 12th International Symposium on Com-
binatorial Search (SoCS), pages 151–159, 2019.

[Veloso et al., 2015] Manuela M. Veloso, Joydeep Biswas,
Brian Coltin, and Stephanie Rosenthal. Cobots: Robust
symbiotic autonomous mobile service robots. In Proceed-
ings of the 24th International Joint Conference on Artifi-
cial Intelligence (IJCAI), pages 4423–4429, 2015.

[Wagner and Choset, 2011] G. Wagner and H. Choset. M*:
A complete multirobot path planning algorithm with per-
formance bounds. In Proceedings of the 2011 IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems, pages 3260–3267, 2011.

	Introduction
	Problem Definition
	Existing MAPF Solvers
	Conflict-Based Search (CBS)
	Enhanced CBS (ECBS)
	Limitations of CBS and ECBS
	Meta-Agent CBS (MA-CBS) and the Merging Technique

	Meta-Agent ECBS (MA-ECBS)
	Nested ECBS (NECBS)
	Restart Techniques
	Empirical Evaluation
	Evaluation of the Merge Thresholds
	Evaluation of the Restart Techniques
	Evaluation of Merging Agents

	Conclusions
	Acknowledgement

