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Abstract

The increasing demand for same-day delivery and
the commitment of e-commerce companies to this
service raise a number of challenges in logistics.
One of these challenges for fulfillment centers is to
coordinate hundreds of mobile robots in their au-
tomated warehouses efficiently to allow for the re-
trieval and packing of thousands of ordered items
within the promised delivery deadlines. We formu-
late this challenge as the new problem of deadline-
aware multi-agent tour planning, where the objec-
tive is to coordinate robots to visit multiple pick-
ing stations in congested warehouses to allow as
many orders to be packed on time as possible. To
solve it, we propose LaRge NeighbOrhood Search
for DEadline-aware MulTi-Agent Tour PlAnning
(ROSETTA). We conduct extensive experiments to
evaluate ROSETTA with up to 350 robots in sim-
ulated warehouses inspired by KIVA systems. We
show that it increases the number of orders com-
pleted on time by up to 38% compared to several
baseline algorithms and also significantly outper-
forms them in terms of throughput and station uti-
lization.

1 Introduction
E-commerce companies, such as Amazon and Alibaba, have
increasingly leveraged multi-robot systems to automate their
warehouse operations [Wurman et al., 2008]. Instead of hu-
man operators walking around in storage areas to fetch in-
ventory items, mobile agents transport them from the storage
area to stations where workers pick the ordered items. How-
ever, the recent trend in e-commerce to promise faster deliver-
ies poses a number of technical challenges for these systems.
For instance, Amazon focuses on same-day delivery with
promises to deliver orders in as little as five hours [Alexan-
der, 2020]. The same is true for other e-commerce compa-
nies, such as Jingdong [Moon, 2013].

The key challenge arises from having tighter deadlines. In-
stead of having several hours before a customer order leaves
the building, e-commerce companies have only a few min-
utes to prepare the order, resulting in a smaller margin for

Figure 1: An illustrative example of the planning problem in ware-
houses for same-day delivery. The agents are represented by the
shapes that correspond to the items they carry. Two picking stations
are located on the perimeter of the warehouse. Each picking station
needs certain items by a given deadline. The red-circle agent can
first visit Station 2 and then Station 1 (Tour 1) or first Station 1 and
then Station 2 (Tour 2).

error. Therefore, they need to plan and schedule the move-
ment of the agents more carefully to ensure that the order
deadlines are met. Another challenge is resource contention.
A single agent might be needed at multiple stations, e.g.,
an agent carrying a popular item, such as bananas, is likely
needed at several stations that process grocery orders. Opti-
mally sequencing these visits is critical in ensuring that the
maximum number of deadlines are met. Figure 1 shows an il-
lustrative example of a warehouse with two picking stations.
The agents are represented by the shapes that correspond to
the items they carry. On the one hand, each picking station
needs a set of items by a given deadline, requiring the rel-
evant agents to visit the station on time. On the other hand,
agents, such as the ones represented by the red circle and blue
square, need to visit both stations, requiring the system to de-
cide on the order in which the agents visit the stations. Moti-
vated by this application, we formulate and solve a large-scale
deadline-aware multi-agent tour planning (DA-MATP) prob-
lem for inventory-laden mobile robots (which we call agents)
in a shared environment, where they need to visit multiple
locations by given deadlines.

DA-MATP is a generalization of multi-agent path finding
(MAPF) [Stern et al., 2019; Yu and LaValle, 2013], the pop-
ular problem of planning collision-free paths for a team of
agents in a shared environment. In the classical MAPF prob-
lem, time is discretized into time steps, and, at each time step,



every agent can either move to an adjacent vertex or wait at
its current vertex in the graph. The objective is to find a set of
paths on the graph, one for each agent, that moves each agent
from its given start vertex to its given goal vertex without
collisions and minimizes the flowtime or the makespan. The
DA-MATP problem can be formulated as a MAPF problem
with two main differences from the classical MAPF problem.
First, instead of having a unique goal vertex, each agent has a
set of goal vertices to visit, each by a given deadline. It is up
to the planner to determine the order in which the agent visits
these goal vertices. Second, instead of minimizing the flow-
time or makespan, the objective is to maximize the number of
tasks completed by their deadlines.

Our first contribution is to introduce and formally de-
fine the DA-MATP problem. Our second contribution is to
propose LaRge NeighbOrhood Search for DEadline-aware
MulTi-Agent Tour PlAnning (ROSETTA), a novel algorithm
for solving the DA-MATP problem. Solving the DA-MATP
problem for commercial warehouses requires planning for
hundreds of agents over time horizons of 30 to 60 minutes.
It takes a classical MAPF solver a few minutes to plan paths
at this scale, without reasoning about the goal orderings [Li
et al., 2021]. To deal with the added complexity of DA-
MATP, we adopt a two-stage planning framework. We first
use ROSETTA to construct a goal ordering, or a tour, for
each agent that minimizes the number of missed deadlines.
We then use MAPF algorithms to refine these tours to paths
in real-time during execution on a rolling-time-horizon ba-
sis. As its name suggests, ROSETTA leverages large neigh-
borhood search (LNS) [Ahuja et al., 2002] to compute high-
quality tours by first finding an initial set of tours quickly and
then reducing the number of missed deadlines over time. Our
third contribution is to develop a novel service time estimator
(STE) that allows ROSETTA to construct high-quality tours
without any path planning. STE uses simple models of station
processing rates and agent motion to predict the queuing de-
lays (i.e., the times spent waiting to be serviced at picking sta-
tions) and travel times of agents, respectively. This hierarchi-
cal approach allows ROSETTA to compute high-quality tours
for tens of stations and hundreds of agents under a minute.

In our experiments, we use simulated warehouses in-
spired by KIVA systems [Wurman et al., 2008] to evalu-
ate ROSETTA. We compare ROSETTA to several baselines
and show that it significantly outperforms them in terms of
not only the number of on-time tasks (our main objective)
but also other important metrics that reflect service quality
but that ROSETTA does not directly optimize, such as the
throughput and station utilization.

2 Related Work
Besides the classical MAPF problem [Stern et al., 2019], an-
other closely related problem to DA-MATP is the multi-agent
pickup and delivery (MAPD) problem, which is an exten-
sion to MAPF with pickup and delivery tasks. A solution
to a MAPD instance determines the assignments of tasks to
each agent and their orders so as to minimize the flowtime or
makespan [Liu et al., 2019; Farinelli et al., 2020]. Multi-
goal planning has been studied in the context of lifelong

MAPF [Li et al., 2021] and lifelong MAPD [Ma et al., 2017;
Ma et al., 2019], where the goal orderings are either not part
of the decision space or determined online. Optimal algo-
rithms [Surynek, 2021; Ren et al., 2021] have been proposed
for MAPF where the goal orderings are part of the decision
space. None of these algorithms solve our problem directly
since they minimize the flowtime or makespan and do not
scale beyond 35 agents. They also find collision-free paths,
whereas ROSETTA plans tours which are refined into paths
during execution.

[Ma et al., 2018] study a variant of MAPF with deadlines
where they maximize the number of agents that reach their
given goal vertices before given deadlines. Deadline require-
ments have also been considered in MAPD, where the state-
of-the-art is a greedy algorithm [Wu et al., 2021] that assigns
tasks based on the closest deadlines on the fly during path
planning to maximize the number of tasks completed by the
deadlines. DA-MATP is different from MAPD with deadlines
in that our tasks do not require pickup actions. However, in
this paper, we adapt their algorithm ST-SAP, introduced in
Section 4, and compare it to ROSETTA.

3 DA-MATP
In this section, we formulate the deadline-aware multi-agent
tour planning (DA-MATP) problem. Solving it requires find-
ing a tour for each of k agents A = {a1, . . . , ak} to that
allows them to cooperatively finish a set of tasks T on a 2D
four-neighbor grid map, where an agent is a mobile robot that
carries a large number of identical inventory items.

The grid map is represented as an unweighted directed
graph G = (V,E). Each agent ai has a start vertex si ∈ V .
A subset of vertices VG ⊆ V are goal vertices. Time is dis-
cretized into equidistant time steps [T ] = {1, 2, . . . , T}. An
agent can either move to an adjacent vertex or stay at its cur-
rent vertex from one time step to the next. At any goal vertex,
an agent can perform a picking action for δ time steps, i.e., if
the agent starts a picking action at time step t, it has to be at
the goal vertex from time step t to time step t+ δ − 1 so that
the human operator can pick up the required inventory items.

Tasks and Deadlines. A task τ ∈ T is specified by a tuple
(aτ , vτ , dτ ) consisting of an agent aτ ∈ A, a goal vertex
vτ ∈ VG and a task deadline dτ ∈ [T ]. We say that task τ
is on-time if agent aτ arrives at goal vertex vτ and starts a
picking action at or before time step dτ , otherwise task τ is
late (meaning that it misses the deadline). We say that task
τ is completed if agent aτ arrives at goal vertex vτ at any
time step and perform a picking action at or before time step
T , even if it is late. Multiple tasks can be completed by the
same agent at the same goal vertex simultaneously with one
picking action.

Warehouses typically have a separate stow process to top
up agents with new inventory. We ignore the stow process
in this paper and assume that agents are pre-filled with suffi-
cient inventory in the initial state. We assume that each agent
has sufficient capacity to hold all items required by T since
storage containers used in KIVA systems consist of a stack of
trays and typically have a large capacity. We also assume that
an agent carries exactly one type of items in large numbers



and that it takes a human operator approximately the same
amount of time to pick up all required items from an agent at
a picking station.

Path Planning and Execution. The movement of the
agents in the DA-MATP problem is subject to the follow-
ing constraints: (1) no more than one agent can be at the
same vertex at the same time step, and (2) no agent can travel
along an edge if another agent is traveling along the edge in
opposite direction (if exists) at the same time step. A tour
pi or, syconymously, a goal ordering for agent ai is a se-
quence of goal vertices indicating the order of the goal ver-
tices that agent ai visits. During execution, a set of tours
P = {pi : i ∈ [k]} is passed to a path planner, which
generates a set of collision-free paths, one per agent, such
that the agents visit the goal vertices in accordance with their
tours. We assume that DA-MATP instances are well-formed
instances [Čáp et al., 2015; Ma et al., 2017], a class of in-
stances that is important for warehouse logistics. In a well-
formed DA-MATP instance, there exists a path between the
start vertex of any agent and any goal vertex that traverses
no other start and goal vertices. Then, a set of collision-
free paths always exists for any given set of tours [Čáp et
al., 2015].

Optimization Objective. The objective of DA-MATP is to
find a set of tours {pi : i ∈ [k]} such that the number of on-
time tasks is maximized during execution. More concretely,
every agent ai follows a collision-free path πi. We let Ti =
{(a′, v′, d′) ∈ T : a′ = ai} be the tasks of agent ai and ti,v
be the time step when agent ai starts a picking action at goal
vertex v when following πi (w.l.o.g., we assume that each
agent performs a picking action at most once at each goal
vertex and let ti,v = ∞ if agent ai never performs a picking
action at goal vertex v at or before time step T ). From them,
we can infer a score function Ri =

∑
τ∈Ti

1[ti,vτ ≤ dτ ] for
agent ai which gives a score of 1 for each on-time task. The
objective then is to maximize the score across all agents, i.e.,∑

ai∈A Ri.

4 Single-Agent Planning Algorithms
In this section, we discuss two single-agent planning (SAP)
algorithms: ST-SAP optimizes for the short term, and LT-
SAP optimizes for the long term.

ST-SAP is a myopic algorithm adapted from [Wu et al.,
2021] that determines the tour for each agent on the fly by as-
signing the next goal vertex to the agent every time it finishes
a picking action at its current one. To assign the next goal
vertex, ST-SAP finds the closest goal vertex that the agent
has not yet visited among those with the soonest deadline and
breaks ties uniform random. Specifically, suppose that agent
ak finishes the picking action at time step t at goal vertex
v ∈ VG. For each v′ ∈ VG that has not yet been visited by
the agent, ST-SAP first finds the task with the soonest dead-
line t̃v′ whose goal vertex is v′ that the agent can complete
on-time if it follows the shortest path from v to v′ without
being blocked by other agents. If no such task exists, t̃v′ is
set to ∞. Among the goal vertices with the soonest dead-
line V ′

G = argminv′∈VG
{t̃v′}, ST-SAP breaks ties in favor

of the closest one, i.e., it chooses the next goal vertex from

argminv′∈V ′
G
{dist(v, v′)}. Any remaining ties are broken

uniformly at random.
ST-SAP runs in polynomial time but is a myopic algorithm

that optimizes only for the short term, i.e., it determines the
tour for each agent on the fly based on only the tasks with the
soonest deadline. We therefore also propose LT-SAP, another
SAP algorithm that optimizes for the long term by taking into
account all tasks in the future. Specifically, LT-SAP uses local
search to plan an individually suboptimal tour for each agent
as if it were the only agent moving on the graph. It uses the
same local search as ROSETTA, that is introduced in Section
5.2.

5 ROSETTA
To overcome the weaknesses of SAP algorithms for DA-
MATP, we propose ROSETTA in this section, which is a
multi-agent planning algorithm that takes into account all
tasks and optimizes for the long term. ROSETTA is shown
in Algorithm 1. ROSETTA takes as input the grid map repre-
sented as a directed unweighted graph G, the set of agents A
with start vertices, the set of goal vertices VG, the time horizon
[T ] and the set of tasks T . Given this input, ROSETTA first
computes an initial solution with prioritized planning (PP)
(Line 3). If there is time remaining, it applies adaptive LNS
[Ropke and Pisinger, 2006] to improve the solution (Lines 5-
15). LNS is a popular local search algorithm that, in each
iteration, destroys and re-optimizes a part of the solution. We
propose two destroy heuristics to determine which part of the
solution to destroy for ROSETTA, namely, a random heuris-
tic and a goal-based heuristic, that generate a subset of agents
whose tours will be removed from the solution and then re-
planned. Adaptive LNS effectively selects one of the destroy
heuristics by maintaining a weight vector w for them (Lines
4 and 11). In each iteration of LNS, ROSETTA first selects a
destroy heuristic H (Line 6) and uses H to generate an agent
set A′ (Line 7). It then removes the tours P− of all agents
in A′ (Line 8) and uses PP to replan their tours (Line 10). If
the replanned tours P− improve the solution (Line 12), then
ROSETTA replaces P− with P+ (Line 13). Finally, it returns
the set of tours P (Line 16).

ROSETTA relies on a service time estimator during plan-
ning (Lines 2, 3, 7, 9, 10 and 15). To evaluate the score of
a given set of tours, ROSETTA could call a MAPF solver
to plan the path of each agent w.r.t. its tour. This allows
ROSETTA to plan the actions of every agent and calculate
the exact score. However, planning such paths for hundreds
of agents and for hundreds of time steps on large graphs can
take up to a few minutes, which limits the scalability of LNS
since it has to plan the paths for a subset of agents in every
iteration. We thus propose the novel notion of a service time
estimator (STE). The stations are usually the most congested
area on a warehouse floor

A STE keeps track of the estimated arrival time and the
queuing delay of each agent at each goal vertex to estimate the
service time (i.e., the time when the agent finishes the picking
action at its last goal vertex) and its score given its tour and
the other agents’ tours. A STE models the congestion at each
goal vertex via a time table. The picking stations are usually



Algorithm 1 ROSETTA
1: Input: A DA-MATP instance I (a graph G, agentsA with start

vertices, goal vertices VG, a time horizon [T ] and tasks T ,).
2: Initialize service time estimator STE on G and VG.
3: P = {pi : i ∈ [k]} ← prioritizedPlanning(I,A, STE)
4: Initialize the weight w of the destroy heuristics
5: while runtime limit not exceeded do
6: H ← selectDestroyHeuristic(w)
7: A′ ← selectAgentSet(I,H, STE)
8: P− ← {pi : ai ∈ A′}
9: STE′ ← STE ▷ Backup the STE

10: P+ ← prioritizedPlanning(I,A′,STE)
11: Update the weights w of the destroy heuristics
12: if P+ leads to a higher estimated score than P− then
13: P ← (P \ P−) ∪ P+

14: else
15: STE← STE′ ▷ Restore the STE
16: return P

Algorithm 2 Estimate the service time and score of a tour
1: Input: a STE STE, a picking action duration δ and a tour

pi = (v1, . . . , vm) of agent ai.
2: Retrieve γ, ASTE and time tables {Qv : v ∈ VG} from STE
3: if ai ∈ ASTE then
4: return the estimated service time and score for agent ai

5: v0 ← si
6: t̂i ← 0, R̂i ← 0
7: for j ← 1 to m do
8: t̂i ← t̂i + ⌈dist(vj−1, vj)/γ⌉
9: Find the minimum t̂i,vj ≥ t̂i s.t. [t̂i,vj , t̂i,vj + δ) are not

occupied in Qvj

10: R̂i ← R̂i+ the number of tasks completed on time at vj at
t̂i,vj by ai

11: t̂i ← t̂i,vj + δ − 1

12: Save the estimated service time t̂i and score R̂i in STE and
return them

the most congested area in a warehouse, where we need to
worry about the interactions between the agents the most. As
for the travel times from one picking station to another, they
are more stable and thus we approximate them using the dis-
tance divided by a constant travel speed. More importantly,
the STE enables multi-agent planning for DA-MATP. In con-
trast, LT-SAP uses a STE but estimates the travel times of
agents without considering the tours of the other agents, and
such a STE is not suitable for ROSETTA.

In the following, we first describe the implementation of
the STE. We then introduce prioritized planning with a STE
(called on Lines 3 and 10 in Algorithm 1) and the two destroy
heuristics of the LNS of ROSETTA.

5.1 Service Time Estimator
In this subsection, we describe the implementation of the
STE. The STE STE maintains a set of agents ASTE and the
set of already-planned tours {pj : aj ∈ ASTE}. It also main-
tains a time table Qv for each v ∈ VG, which is an array of
length T . Qv records the index of the agent that performs a
picking action at goal vertex v at each time step (or zero if
no such agent exists). Given a tour pi = (v1, . . . , vm) of an

Algorithm 3 prioritizedPlanning(I,APP,STE)

1: Input: a DA-MATP instance I , a set of agents APP ⊆ A, a
STE STE.

2: Retrieve ASTE

3: for ai ∈ APP ∩ ASTE do
4: Remove the tour of ai from STE
5: Randomly shuffle APP ▷ Obtain a random priority order
6: P PP ← ∅
7: for ai ∈ APP in descending order of their priorities do
8: pi ← findSingleAgentOptimalTour(I, ai, STE)
9: Add tour pi into STE

10: P PP ← P PP ∪ {pi}
11: return P PP

agent ai, a STE supports three types of operations: (1) esti-
mate the service time and score for ai given tour pi and the
tours of the agents in ASTE; (2) add the tour of agent ai into
STE; and (3) remove the tour of agent ai from STE. Given
the graph G and goal vertices VG, we initialize a STE (Line 2
in Algorithm 1) by setting ASTE = ∅ and Qv to zeros for all
v ∈ VG. We also pre-compute the all-pair distances between
vertices in VG on graph G to speed up the computation later.

Estimating the Service Time and Score for ai Given Tour
pi and the Tours of the Agents in ASTE. To estimate the
service time for ai, the STE separately estimates (1) the travel
time to get from one goal vertex to the next one and (2) the
time the agent waits after “arriving at” a goal vertex (it does
not precisely arrive at the goal vertex; instead, it waits at some
vertices as close to the goal vertex as possible and slowly
moves towards it) before it performs the picking action, i.e.,
the delay due to queuing at the goal vertex. As shown in Al-
gorithm 2, we first retrieve the information from STE (Line
2) and initialize both the estimated service time t̂i and score
R̂i to 0 (Line 6). We then iterate through all goal vertices vj
in order of their visits according to tour pi (Line 7). We then
estimate the “arrival” time t̂i of agent ai at vj based on the
pre-computed distance dist(vj−1, vj) from vj−1 to vj and a
constant speed 0 < γ ≤ 1 (Line 8). γ represents the average
number of vertices an agent traverse per time step in the pres-
ence of other agents. Setting γ = 1 assumes no interference
from other agents. In practice, however, agents wait in place
to let other agents pass, slowing them down. We determine γ
experimentally.

Once agents arrive at their next goal vertex, they queue up
behind other agents that visit the vertex as well. To capture
this queueing delay, we look for the next available δ con-
secutive time steps starting at time step t̂i, i.e., time steps
that are marked as zero (unoccupied) in time table Qvj . Let
[t̂i,vj , t̂i,vj + δ) be the time interval found (Line 9), where
t̂i,vj is the estimated time step when agent ai starts the pick-
ing action at vj . We then update t̂i and R̂i accordingly (Lines
10-11). Finally, we return t̂i and R̂i as the estimated service
time and score of agent ai (Line 12).

Adding a Tour into STE. To add a tour pi = (v1, . . . , vm)
of agent ai into STE, we can use Algorithm 2. The only
changes we need to make are to updateASTE ← ASTE∪{ai}



Figure 2: An empty warehouse map adapted from [Wurman et al., 2008] with 32 picking stations spread around the perimeter. Grey cells are
obstacles. Yellow, pink or green cells correspond to vertices of graph G that the agents can traverse and occupy. Every arrow pointing from
one cell to an adjacent one indicates the direction of the corresponding edge. Pink cells are the eject cells of picking stations and correspond
to goal vertices of graph G.

and mark the time intervals of picking actions as occupied by
agent ai in the time table (on Line 9 in Algorithm 2).
Removing a Tour from STE. To remove a tour pi =
(v1, . . . , vm) of agent ai from STE, we update ASTE ←
ASTE \ {ai}. We also mark the time steps that are occupied
by agent ai in the time table Qvj of each goal vertex vj as
zeros (on Line 9 in Algorithm 2).

5.2 Prioritized Planning with STE
In this subsection, we introduce prioritized planning (PP)
with a STE in ROSETTA. Prioritized planning is a popu-
lar algorithm for cooperative multi-agent path planning [Sil-
ver, 2005] that can efficiently find suboptimal solutions.
ROSETTA first uses PP to find an initial solution and then
replans tours repeatedly (Lines 3 and 10 in Algorithm 1). We
show the pseudocode of PP with STE in Algorithm 3. PP
first removes the tours of all agents that it will replan from
STE (Lines 3-4). (When PP is used to find an initial solution,
these two lines do nothing since ASTE is empty.) It then ran-
domly shuffles the agents in APP to obtain a random priority
ordering (Line 5) and initializes the solution PPP to ∅ (Line
6). Next, it iterates over all agents in APP in descending or-
der of their priorities (Line 7). For each agent ai, it plans a
(sub)optimal tour pi that maximizes the estimated score R̂i

w.r.t. STE (Line 8) and updates both STE (Line 9) and PPP

(Line 10) accordingly. Finally, PP returns PPP once it has
(re)planned a tour for all agents in APP (Line 11).

The final missing piece of Algorithm 3 is how to plan a
(sub)optimal tour pi for agent ai (Line 8). This subproblem
is a variant of the (single-agent) traveling salesman problem
with deadlines [Bansal et al., 2004] on a complete directed
graph Gi,TSP, where the vertices are the start vertex si of ai
and the goal vertices relevant for the agent. The cost of each
edge in Gi,TSP is dynamic and depends on the time it starts
traversing (which can be estimated with the STE). We use a
local search algorithm to solve this subproblem.

5.3 Destroy Heuristics
In this subsection, we describe two destroy heuristics that
generate the subset of agents A′ to replan in each iteration
of LNS (Line 7 in Algorithm 1), namely a random heuristic
and a goal-based heuristic. We impose an upper bound k′

on the number of agents. The random heuristic obtains A′

by sampling k′ agents from A uniformly at random without
replacement. The goal-based heuristic randomly samples a
goal vertex v ∈ VG and a time step t ∈ [T ], looks up the time
table Qv maintained by the STE and obtains A′ by including
k′ agents that perform picking actions at v at the time steps
closest to t. If there are not a sufficient number of agents, it
includes all agents that perform picking actions at v.

6 Empirical Evaluation
In this section, we demonstrate the effectiveness of
ROSETTA through extensive experiments. We implement
ROSETTA in C++ and conduct our experiments on 2.4 GHz
CPUs with 16 GB RAM. We compare ROSETTA to both ST-
SAP and LT-SAP on simulated warehouses inspired by KIVA
systems [Wurman et al., 2008]. We also compare it to pri-
oritized planning with a STE (denoted by ROSETTA-init),
which is the initial solution found by ROSETTA (Line 3 of
Algorithm 1). We show the empty warehouse map in Fig-
ure 2, which is a 79 × 25 grid map with 32 picking stations
surrounding a 71× 17 empty area.

To generate a DA-MATP instance, we construct a graph
G = (V,E) whose vertices V correspond to the non-obstacle
cells and whose edges E correspond to the arrows in Fig-
ure 2. The goal vertices VG correspond to the picking sta-
tions (shown in pink). There are k agents, and the start ver-
tex of each agent is randomly sampled from the storage cells
(shown in green). We use a time horizon of T = 600 time
steps, and each picking action takes δ = 5 time steps. For
each task τ = (aτ , vτ , dτ ), aτ , vτ and dτ are drawn uni-
formly at random fromA, VG and ∆i, respectively, where we
use the deadline distributions ∆1 = {50, 100, 150, . . . , 600},
∆2 = {100, 200, . . . , 600}, ∆3 = {200, 400, 600} and
∆4 = {300, 600}. We generate 50 instances for each ∆i

and each number of agents k ∈ {250, 300, 350}. For k =
250, 300 and 350, we generate |T | = 3,333, 4,000 and 4,666
tasks, respectively.

For the evaluation, we use RHCR [Li et al., 2021], a life-
long MAPF simulator. RHCR plans collision-free paths for
agents with given tours on a rolling-horizon basis. For LT-
SAP and ROSETTA, RHCR uses the tours that they generate;
and for ST-SAP, RHCR uses the greedy rule to determine the



algorithms 250 agents 300 agents 350 agents
#on-time throughput #on-time throughput #on-time throughput

∆1

ST-SAP 1,880 (+00.0%) 2,787 (+00.0%) 2,102 (+00.0%) 3,252 (+00.0%) 2,213 (+00.0%) 3,622 (+00.0%)
LT-SAP 2,379 (+26.5%) 3,199 (+14.8%) 2,478 (+17.9%) 3,447 (+06.0%) 2,501 (+13.0%) 3,507 (-03.2%)
ROSETTA-init 2,435 (+29.5%) 3,249 (+16.6%) 2,736 (+30.1%) 3,708 (+14.0%) 2,866 (+29.5%) 3,956 (+09.2%)
ROSETTA-30 2,441 (+29.8%) 3,244 (+16.4%) 2,742 (+30.4%) 3,720 (+14.4%) 2,891 (+30.4%) 3,991 (+10.2%)
ROSETTA-60 2,445 (+30.1%) 3,246 (+16.5%) 2,760 (+31.3%) 3,744 (+15.1%) 2,952 (+33.3%) 4,109 (+13.4%)

∆2

ST-SAP 2,190 (+00.0%) 2,801 (+00.0%) 2,489 (+00.0%) 3,334 (+00.0%) 2,638 (+00.0%) 3,639 (+00.0%)
LT-SAP 2,508 (+14.5%) 3,211 (+14.6%) 2,677 (+07.6%) 3,571 (+07.1%) 2,542 (-03.6%) 3,452 (-05.1%)
ROSETTA-init 2,549 (+16.3%) 3,255 (+16.2%) 2,880 (+15.7%) 3,719 (+11.5%) 3,007 (+14.0%) 3,952 (+08.6%)
ROSETTA-30 2,558 (+16.8%) 3,246 (+15.9%) 2,895 (+16.3%) 3,740 (+12.2%) 3,066 (+16.2%) 3,982 (+09.4%)
ROSETTA-60 2,562 (+17.0%) 3,250 (+16.0%) 2,905 (+16.7%) 3,768 (+13.0%) 3,100 (+17.5%) 4,117 (+13.1%)

∆3

ST-SAP 2,502 (+00.0%) 2,814 (+00.0%) 2,883 (+00.0%) 3,286 (+00.0%) 3,141 (+00.0%) 3,648 (+00.0%)
LT-SAP 2,708 (+08.2%) 3,228 (+14.7%) 2,822 (-02.1%) 3,453 (+05.1%) 3,093 (-01.5%) 3,506 (-03.9%)
ROSETTA-init 2,739 (+09.5%) 3,262 (+15.9%) 3,085 (+07.0%) 3,703 (+12.7%) 3,214 (+02.3%) 3,940 (+08.0%)
ROSETTA-30 2,749 (+09.9%) 3,260 (+15.8%) 3,094 (+07.3%) 3,715 (+13.1%) 3,227 (+02.7%) 3,932 (+07.8%)
ROSETTA-60 2,747 (+09.8%) 3,253 (+15.6%) 3,119 (+08.2%) 3,764 (+14.5%) 3,347 (+06.6%) 4,126 (+13.1%)

∆4

ST-SAP 2,633 (+00.0%) 2,815 (+00.0%) 3,045 (+00.0%) 3,281 (+00.0%) 3,350 (+00.0%) 3,643 (+00.0%)
LT-SAP 2,882 (+09.5%) 3,235 (+14.9%) 3,047 (+00.0%) 3,495 (+06.5%) 3,051 (-09.0%) 3,562 (-02.2%)
ROSETTA-init 2,900 (+10.6%) 3,267 (+16.1%) 3,264 (+07.2%) 3,703 (+12.9%) 3,425 (+02.2%) 3,941 (+08.2%)
ROSETTA-30 2,913 (+10.6%) 3,266 (+16.0%) 3,280 (+07.7%) 3,725 (+13.5%) 3,429 (+02.4%) 3,938 (+08.1%)
ROSETTA-60 2,914 (+10.7%) 3,264 (+15.9%) 3,309 (+08.7%) 3,777 (+15.1%) 3,571 (+06.6%) 4,141 (+13.7%)

Table 1: Performance metrics on the empty warehouse map averaged over 50 instances. “#on-time” is the number of on-time tasks (higher is
better) and “throughput” is the number of completed tasks (higher is better). The numbers in parentheses are the improvements (in percent)
over ST-SAP. The entries with the best performance are shown in bold.

next goal vertex on the fly during execution. We evaluate the
number of on-time tasks, the throughput (i.e., the number of
completed tasks) and the station utilization (i.e., the number
of time steps where a picking station is occupied) to evaluate
the algorithms. We use ROSETTA with a runtime limit of
30 and 60 seconds, denote by ROSETTA-30 and ROSETTA-
60. We use of k′ = 8 an upper bound on the cardinality of
the agent sets generated by the destroy heuristics.1 We use
λ = 0.8 as travel speed of the agents for both LT-SAP and
ROSETTA.2

Results. Table 1 shows the number of on-time tasks and
the throughput for the empty warehouse map shown in Fig-
ure 2 for different numbers of agents k and deadline dis-
tributions ∆i averaged over 50 instances. The initial solu-
tion of ROSETTA (denoted by ROSETTA-init) already de-
livers better performance than ST-SAP and LT-SAP in all
cases w.r.t. both metrics. Given additional time to run LNS,
ROSETTA improves the solution quality further. For exam-
ple, ROSETTA-60 completes 6.6% to 33.3% more tasks on
time than ST-SAP on the empty warehouse map. and in-
creases the throughput by at least 13.0% in all cases, even
though it does not attempt to optimize this metric.

We compare ROSETTA to ST-SAP and LT-SAP further on
the empty warehouse map with deadline distribution ∆1. Ta-
ble 2 shows the number of time steps that an agent needs to
travel from its current goal vertex to the next one, the sta-
tion utilization measured by the number of time steps that a
goal vertex is occupied and the number of picking actions
performed by the agents. ROSETTA shortens the agents’
travel time between picking stations, coordinates agents to

1We experiment with k′ ∈ {4, 8, 16} on a separate set of in-
stances for validation, and k′ = 8 performed the best.

2We experimented with λ ∈ {0.6, 0.7, 0.8, 0.9, 1} on a separate
set of instances for validation, and λ = 0.8 performed the best.
Also, λ = 0.8 aligns with the travel speed of agents derived from
data from RHCR’s simulations.

algorithms task time utilization #picking action
250 agents

ST-SAP 49.2 (-00.0%) 351 (+00.0%) 2,246 (+00.0%)
LT-SAP 33.8 (-31.2%) 410 (+16.8%) 2,626 (+16.9%)
ROSETTA-60 33.3 (-32.2%) 416 (+18.5%) 2,649 (+17.9%)

300 agents
ST-SAP 50.2 (-00.0%) 408 (+00.0%) 2,607 (+00.0%)
LT-SAP 36.5 (-27.3%) 435 (+06.6%) 2,778 (+06.6%)
ROSETTA-60 36.1 (-28.0%) 469 (+15.0%) 3,000 (+15.1%)

350 agents
ST-SAP 51.8 (-00.0%) 450 (+00.0%) 2,876 (+00.0%)
LT-SAP 39.7 (-23.4%) 436 (-03.1%) 2,787 (-03.1%)
ROSETTA-60 39.0 (-24.6%) 491 (+09.1%) 3,139 (+09.1%)

Table 2: Performance metrics on the empty warehouse map aver-
aged over 50 instances with deadline distribution ∆1. “Task time”
is the number of time steps that an agent needs to travel from its
current goal vertex to the next one (lower is better), “utilization” is
the station utilization (higher is better), and “#picking action” is the
total number of picking actions performed by the agents (higher is
better). The numbers in parentheses are the improvements (in per-
cent) over ST-SAP. The entries with the best performance are shown
in bold.

visit more of them and thus increases the station utilization
compared to both ST-SAP and LT-SAP.

7 Conclusion
Motivated by same-day delivery promises of e-commerce
companies, we proposed the new challenge of coordinating
multiple agents in warehouses to visit multiple goal locations
by given deadlines in form of the DA-MATP problem. We de-
signed the novel multi-agent planning algorithm ROSETTA
that uses travel and queuing time estimates to decouple multi-
agent tour planning from multi-agent path finding, allowing
it to scale to realistic problem sizes. Empirical evaluations
on realistic warehouse maps showed that ROSETTA outper-
formed two baselines significantly in terms of the resulting
number of tasks completed by their deadlines, the throughput
and the station utilization.
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