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Abstract

The Multi-Agent Path Finding (MAPF) problem involves
planning collision-free paths for multiple agents in a shared
environment. The majority of MAPF solvers rely on the as-
sumption that an agent can arrive at a specific location at a
specific timestep. However, real-world execution uncertain-
ties can cause agents to deviate from this assumption, leading
to collisions and deadlocks. Prior research solves this prob-
lem by having agents follow a Temporal Plan Graph (TPG),
enforcing a consistent passing order at every location as de-
fined in the MAPF plan. However, we show that TPGs are
overly strict because, in some circumstances, satisfying the
passing order requires agents to wait unnecessarily, leading
to longer execution time. To overcome this issue, we intro-
duce a new graphical representation called a Bidirectional
Temporal Plan Graph (BTPG), which allows switching pass-
ing orders during execution to avoid unnecessary waiting
time. We design two anytime algorithms for constructing a
BTPG: BTPG-naı̈ve and BTPG-optimized. Experimental re-
sults show that following BTPGs consistently outperforms
following TPGs, reducing unnecessary waits by 8-20%.

1 Introduction
The Multi-Agent Path Finding (MAPF) problem involves
finding paths for multiple agents to reach their respective
destinations from their starting points in a shared environ-
ment without collisions (Stern et al. 2019). The importance
of solving the MAPF problem is reflected in its wide range
of applications, such as warehouse automation (Varambally,
Li, and Koenig 2022), traffic management (Li et al. 2021a),
and drone swarm coordination (Honig et al. 2018).

The MAPF problem discretizes time into unit timesteps,
assuming that an agent can reach a particular location at a
particular timestep. However, in practice, agents face chal-
lenges such as communication delays, physical constraints,
or hardware failures that prevent them from meeting this as-
sumption. When an agent is unable to reach a location re-
quired by the MAPF plan at a specific timestep, it may result
in deadlocks or collisions with other agents.

To address this issue, Ma, Kumar, and Koenig (2017) pro-
posed a MAPF with Delay Probability (MAPF-DP) model
where, at each timestep, each agent has a certain probability
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(a) Scenario 1. (b) Scenario 2. (c) TPG for Scenario 2.

Figure 1: Motivating examples. In Scenario 1 (2), the MAPF
plan requries the agents to follow the arrows with the green
agent passing through location F (E) before the blue agent.

of stopping in place, leading to delays. Both Ma, Kumar, and
Koenig (2017) and Hoenig et al. (2016) show that as long as
the agents adhere to the inter-agent dependencies required
by the MAPF plan, they can complete their respective paths
without collisions or deadlocks. These dependencies ensure
that the order in which the agents pass through every loca-
tion is consistent with the planned path. Both studies cap-
ture these dependencies by defining a graph representation,
called the Temporal Plan Graph (TPG). Requiring agents
to execute according to the dependencies in the TPG en-
sures completion of the MAPF plan without collisions and
deadlocks, even if agents reach some locations at different
timesteps than specified in the MAPF plan.

In Figure 1a, the MAPF plan specifies that the green agent
should pass location F before the blue agent. If they follow
the corresponding TPG, the green agent will pass F first.
Switching this order would lead to a deadlock, with the blue
agent trying to move from F to E and the green agent from E
to F. In contrast, Figure 1b shows a different scenario. Here,
the green agent is supposed to pass location E first. If the
green agent is delayed at D, the TPG makes the blue agent
wait at B until the green agent passes E. However, if the
green agent is delayed, the blue agent can safely pass E first
without causing a deadlock. This flexibility in switching the
order of passing can reduce unnecessary waiting and shorten
the overall execution time.

The goal of this paper is to determine when the dependen-
cies can be switched, allowing agents to pass such locations
in a “first-come-first-served” manner in execution to mini-
mize unnecessary waiting time. Our main contributions are:

1. Defining a new graphical representation called the Bidi-



rectional Temporal Planning Graph (BTPG) for captur-
ing all such switchable dependencies in a MAPF plan;

2. Introducing sufficient conditions for a BTPG to be prov-
ably collision-free and deadlock-free;

3. Proposing two anytime algorithms for constructing a
BTPG, namely BTPG-naı̈ve and BTPG-optimized, and
showing that following BTPGs consistently outperforms
following TPGs, reducing unnecessary waits by 8-20%.

2 Preliminaries

2.1 Problem Definition

The input of the MAPF problem (Stern et al. 2019) contains
an undirected graph and a set of n agents, each with a start
location and a target location. Its output is a MAPF plan,
which is a set of conflict-free paths for n agents that move
them from their respective start locations to their respective
target locations. Time is discretized into unit timesteps. At
every timestep, an agent either moves to a neighboring lo-
cation or waits at its current location. The ith element in an
agent’s path represents the location of that agent at timestep
i. An agent that finishes its path rests at its target loca-
tion forever. There are two ways in which the paths of two
agents can create a conflict: A vertex conflict occurs when
two agents occupy the same location at the same timestep,
and a edge conflict occurs when two agents traverse the same
edge at the same timestep.

To enable the “first-come-first-served” mechanism, we as-
sume that, during execution, every agent has an onboard
collision-avoidance mechanism that can stop automatically
when there is an obstacle (such as another agent) in front of
it, a common function for modern robots.

In order to reflect the execution uncertainty in real appli-
cations, we use the MAPF with Delay Probabilities (MAPF-
DP) model (Ma, Kumar, and Koenig 2017). That is, during
execution, an agent may get stuck at its current location for
a period of time instead of following its path to move to
its next location. In addition to the two types of conflicts
defined above, the original MAPF-DP model also disallows
following conflicts, where one agent enters a vertex that was
occupied by another agent in the previous timestep. Their
concern is that if the front agent suddenly stops, the follow-
ing agent may run into the front agent. However, we allow
the following conflicts in this paper for three reasons. First,
the onboard collision-avoidance mechanism can easily guar-
antee collision-freeness in the above-mentioned situation be-
cause the following agent will stop when the front agent
stops. Second, allowing following conflicts makes MAPF
plans shorter and thus potentially leads to better execution
times. Third, most modern MAPF planners, such as CBS-
based (Sharon et al. 2015; Gange, Harabor, and Stuckey
2019; Li, Ruml, and Koenig 2021), priority-based (Erdmann
and Lozano-Perez 1986; Ma et al. 2019), and rule-based
(Sajid, Luna, and Bekris 2012; Okumura et al. 2019) plan-
ners allow for following conflicts, so we can directly use
these off-the-shelf MAPF planners without changes.

Figure 2: TPG for the sce-
nario where 3 agents rotate in
a cycle simultaneously.

Figure 3: BTPG for the
example depicted in Fig-
ure 1b.

2.2 Temporal Plan Graph (TPG)

We now introduce the definition of TPGs along with its
properties established in prior research. In line with previ-
ous work, we assume that following conflicts are disallowed
here. In the next section, we will demonstrate how we mod-
ify the definition and properties of TPGs to accommodate
scenarios where such following conflicts are indeed allowed.

Definition 1 (TPG). TPG (Ma, Kumar, and Koenig 2017)
is a directed acyclic graph G = (V,E). Each vertex vmi ∈
V represents a state of agent m being at location loc(vmi ).
Here, i indicates that loc(vmi ) is the ith element in the path
of agent m. Each edge establishes a precedence dependency
between two states. We divide the edges E into type-1 edges
E1 and type-2 edges E2. A type-1 edge (vmi , vmi+1) ∈ E1

forces agent m to enter loc(vmi+1) only after it has entered
loc(vmi ); A type-2 edge (vmi , vnj ) ∈ E2 forces agent n to
enter loc(vnj ) only after agent m has entered loc(vmi ).

TPG Construction To construct a TPG from a given
MAPF plan, for every agent, we introduce a vertex for ev-
ery element in its path that is different from the previous
one, i.e., we omit states indicating waits. We add a type-1
edge for each pair of successive elements in the path of ev-
ery agent. We add a type-2 edge if one agent visits a location
before another. More specifically, if there is a conflict loca-
tion loc(vmi ) = loc(vnj ), and agent m visits it before agent
n in the MAPF plan, we introduce a type-2 edge (vmi+1, v

n
j ),

indicating that only after agent m left loc(vmi ) and enters its
next location loc(vmi+1), agent n is allowed to enter loc(vnj ).
Figure 1c illustrates the TPG derived from the MAPF plan
depicted in Figure 1b. For simplicity, we use loc(vmi ) to de-
note a vertex vmi . The arrow FE is a type-2 edge indicating
that the green agent needs to pass through location E before
the blue agent. Other arrows represent type-1 edges.

TPG Execution Policy At each timestep during execu-
tion, each agent m is allowed to move to its next state vmi
only if, ∀(vnj , vmi ) ∈ E2, agent n has already visited state
vnj ; otherwise, it must wait (Ma, Kumar, and Koenig 2017).

Property 1 (Cycle-free⇔ valid TPG). If and only if a TPG
is cycle-free, TPG execution is guaranteed to succeed, i.e.,
agents are assured to reach their target locations without col-
lisions or deadlocks (Berndt et al. 2020; Coskun, O’Kane,
and Valtorta 2021). We refer to such a TPG as a valid TPG.



2.3 Related Work
The TPG execution policy asks agents to coordinate their
passing orders at conflict locations, which sometimes leads
to unnecessary waits. One way to reduce such unneces-
sary waits is to find MAPF plans that explicitly minimize
coordination, such as SL-CBS (Wagner, Veerapaneni, and
Likhachev 2022) and DBS (Okumura et al. 2023). However,
these models usually impose overly strict coordination con-
straints, making them more challenging to solve than regular
MAPF and resulting in longer execution times.

Another way is to generate MAPF plans that consider
potential delays during planning (Ma, Kumar, and Koenig
2017; Atzmon et al. 2018), which, however, demand prior
knowledge of delays and are sometimes overly conservative.

A third way is to replan, for example, by checking if a
particular passing order can be switched when delays hap-
pen during execution (Berndt et al. 2020; Paul, Feng, and
Li 2023; Pecora et al. 2018; Coskun, O’Kane, and Valtorta
2021). However, these methods require additional computa-
tion during execution, potentially introducing further delays.

In contrast, our proposed BTPG idea generates a MAPF
plan using regular MAPF planners and post-processing it
by exploring all potential switchable dependencies during
the planning phase. By doing so, we avoid increasing the
complexity of solving MAPF, eliminate the need for prior
knowledge of delay distribution, and eradicate the necessity
for additional computation during execution.

3 TPG that Allows Following
In the TPG shown in Figure 1c, suppose at timestep t, the
blue and green agents are at B and E, respectively. However,
at timestep t + 1, the blue agent cannot reach E even if the
green agent departs E at the same timestep. This is because
the original definition of type-2 edges was predicated on dis-
allowing following conflicts, which requires the blue agent
to reach E only after the green agent reaches F.

However, since we allow such following actions, we pro-
pose a refined definition for type-2 edges (vmi , vnj ). The re-
vised definition specifies that agent n can enter loc(vnj ) no
earlier than agent m enters loc(vmi ). With this adjustment,
in Figure 1c, the blue agent can enter E simultaneously with
the green agent departing E for F.

It is worth noting that this change is orthogonal to our
proposed BTPG techniques. Our techniques are applicable
to both TPGs that allow following and those that do not.

3.1 Rotation Cycle
Since agents can follow each other, they can rotate simulta-
neously, which was not allowed before in the original TPG
definition. Figure 2 shows an example, where, at the same
timestep, agent 1 goes from A to B, agent 2 goes from B
to C, and agent 3 goes from C to A. This leads to a cycle
(B → A → C → B) in the TPG but not a deadlock. We
thus need to update the definition of valid TPGs.

Definition 2 (Rotation Cycle). A rotation cycle is a cycle in
a TPG consisting of only type-2 edges, with the cycle con-
taining more than two edges. Note that if a cycle contains

only two edges, it leads to a deadlock, since rotating the cor-
responding two agents is an edge conflict.
Property 2 (Valid TPG with rotations). A TPG (that allows
following) is valid if it has no non-rotation cycles.

4 Bidirectional TPG
Figure 1c depicts the TPG for Scenario 2 (Figure 1b) where
the green agent enters E before the blue agent. If we switch
the passing order, letting the blue agent enter E first, then
we must change the type-2 edge from (F,E) to (H,E). We
refer to these two type-2 edges as a bidirectional pair.
Definition 3 (Bidirectional pair). A bidirectional pair (e, ẽ)
consists of two type-2 edges e = (vmi+1, v

n
j ) and ẽ =

(vnj+1, v
m
i ) with conflict location loc(vnj ) = loc(vmi ). We

refer to one such edge as the reversed edge of the other.
Definition 4 (BTPG). A Bidirectional TPG (BTPG) is a
TPG that contains bidirectional pairs. We use Epair to rep-
resent the set of type-2 edges that are in bidirectional pairs.

BTPG Execution Policy The BTPG execution policy fol-
lows the TPG execution policy except that, for each bidi-
rectional pair, only one edge is selected during execution
based on a “first-come-first-served” manner. Specifically, ei-
ther agent in the pair is allowed to enter the conflict location
first. But when the first agent arrives, the type-2 edge that
enables this agent to enter first is selected, while the other
edge is discarded. In other words, edge (vmi+1, v

n
j ) is selected

when agent m reaches vmi , and edge (vnj+1, v
m
i ) is selected

when agent n reaches vnj . Figure 3 displays the BTPG for
Scenario 2. Edges (F,E) and (H,E) are a bidirectional pair,
indicating that both agents can pass through location E first.
If, for example, the green agent reaches E first, then (F,E)
is selected, and (H,E) is discarded.

Execution Time of TPG vs BTPG While we introduce
BTPG to reduce unnecessary waits caused by certain type-
2 edges in TPG, the execution time of following the BTPG
policy can be longer than that of following the TPG pol-
icy in adversarial cases. We provide an example in Figure 4,
even though we have not observed any such cases among the
3,900 simulations tested in our experiments.

5 Construct BTPG from TPG
To construct a BTPG, we first run a MAPF planner to ob-
tain a MAPF plan and convert it to a valid TPG. We then
check one by one whether each type-2 edge can be trans-
formed into a bidirectional pair without resulting in an in-
valid BTPG. We terminate the algorithm when we reach the
runtime limit or when all type-2 edges have been evaluated.
We develop two such algorithms: BTPG-n and BTPG-o.

5.1 BTPG-naı̈ve (BTPG-n)
Since exactly one edge within each bidirectional pair will
be selected during execution, a BTPG with k bidirectional
pairs can be conceptualized as comprising a collection of
2k TPGs, each of which represents a different combination
of edges in bidirectional pairs. Depending on the order in
which the agents pass through the conflict location of each



Figure 4: In our 3,900 simulations, BTPG never performed worse than TPG. Thus ideally we could prove that BTPGs are
strictly superior to TPGs. However, here we show a hand-crafted adversarial example where a BTPG leads to longer execution
time than a TPG under a specific set of delays.

bidirectional pair, one of these TPGs will eventually be exe-
cuted. Therefore, when all 2k TPGs are valid, namely none
of them contains any non-rotation cycles (according to Prop-
erty 2), the corresponding BTPG is guaranteed to be valid.
Concurrently, not viewing a BTPG as 2k TPGs but viewing
it as a single graph with bidirectional pairs, a BTPG is valid
if it contains only rotation cycles and self cycles, where a self
cycle is a cycle that involves both edges in a bidirectional
pair, like E → H → E → F → E shown in Figure 3.
A valid BTPG can have self cycles because a self cycle can
never appear in one TPG as a TPG cannot contain both edges
in a bidirectional pair.
Property 3 (Valid BTPG-naı̈ve). A BTPG is valid if it does
not contain any Non-Rotation and Non-Self (NRNS) cycles.

Based on Property 3, our first proposed algorithm BTPG-
naı̈ve (BTPG-n) (see Algorithm 1) examines type-2 edges
one by one to detect NRNS cycles and change an edge to
bidireticonal pairs if no NRNS cycles are found. As G is
guaranteed to have no NRNS cycles at the beginning of each
“for” iteration (Line 5), our focus is solely on checking for
NRNS cycles involving the newly added edge ẽ at Line 8.
This verification is carried out by running a Depth First
Search (DFS) (see Algorithm 2) from vmi to determine if
we can reach vnj+1 through NRNS cycles. Note that Lines 4
and 5 indicate that vmi+1 is not the first state of agent m, and
vnj is not the last state of agent n. We do not examine type-
2 edges pointing from the first state of an agent because it
starts at its first state, so no other agents can visit the cor-
responding conflict location before it. Similarly, we do not
examine those pointing to the last state of an agent because
it stays there without leaving, so no other agents can visit the
corresponding conflict location after it.

Algorithm 2 returns true if and only if it detects a NRNS
cycle. It makes two key changes to regular DFS to exclude
rotation and self cycles. First, since only one edge within
each bidirectional pair can be selected during execution, our
DFS must avoid visiting both edges in a bidirectional pair
along one DFS branch. To do so, we use Evis to store the
edges that our DFS has visited along the current branch and
prune a child node if the reversed edge of the current type-

Algorithm 1: BTPG-naı̈ve/optimized. The boxed
code is only for BTPG-optimized.

1 MyFunctionMyFunction
Input: TPG G = (V,E1 ∪ E2)
Output: BTPG G

2 Epair ← ∅; // set of edges in bidirectional pairs
3 while Epair has been updated do
4 for e = (vmi+1, v

n
j ) in E2 (or until TimeOut) do

5 ẽ← (vnj+1, v
m
i ); // reversed edge

6 Epair ← Epair ∪ {e, ẽ}, E2 ← E2 \ {e};
7 G ← (V,E1 ∪ E2 ∪ Epair);

8 if hasCycle(G, vmi , vnj+1, {vmi }, {e}) then
9 Epair ← Epair \ {e, ẽ}, E2 ← E2 ∪ {e};

10 return G = (V,E1 ∪ E2 ∪ Epair);

2 edge is in Evis (Lines 7 and 8). Second, when our DFS
finds a cycle (Line 1), we return false if it is a rotation cy-
cle (Lines 2 and 3) and true otherwise (Line 4). Here, Evis

to store the edges that our DFS has visited along the cur-
rent branch.An additional implementation detail not explic-
itly outlined in this pseudo-code is that, to speed up our DFS,
we maintain a set of visited vertices to prevent the algorithm
from re-expanding the same vertex.

Grouping Motivated by (Berndt et al. 2020), we find two
common cases in which BTPG-n cannot change the type-2
edges to bidirectional pairs shown in Figure 5. They are the
cases where two agents visit the same sequence of locations
in the same or reversed order, which have consecutive type-2
edges in corresponding TPGs. As adding the reserved edge
of any type-2 edge can form a NRNS cycle, BTPG-n cannot
change any type-2 edges in such cases to bidirectional pairs.
Therefore, at Line 4 of Algorithm 1, we merge such type-2
edges into groups and examine only type-2 edges that cannot
form a group to reduce the runtime.



Algorithm 2: hasCycle. The boxed code is only for
BTPG-optimized.

Input: (1) BTPG G = (V,E1 ∪ E2 ∪ Epair), (2)
current vertex for expansion vmi , (3) origin
vertex vo, and (4) set(s) of visited
vertices Vvis and edges Evis along the

current DFS branch.
Output: true or false

1 if vmi = vo then
2 if Evis ⊂ E2 ∪ Epair and |Evis| > 2 then
3 return false; // rotation cycle
4 else return true;
5 for vnj in {vnj ∈ V | (vmi , vnj ) ∈ E1∪E2∪Epair} do
6 e← (vmi , vnj );
7 if e ∈ Epair then
8 if (vnj+1, v

m
i−1) ∈ Evis

or ∃vmi′ ∈ Vvis : i
′ < i then continue;

9 if hasCycle(G, vnj , vo, Vvis ∪ {vnj },
Evis ∪ {e}) then return true;

10 return false;

Figure 5: Two cases of grouping: The left case is when one
agent follows another agent; the right one is when two agents
move along the same path in opposite directions. Red arrows
depict the reversed edges of edge (C,B).

5.2 BTPG-optimized (BTPG-o)
Examining all 2k TPGs is overly conservative as we find that
not all 2k TPGs can occur in practice. Consider the example
in Figure 6. If we add bidirectional pairs for all three type-2
edges, the resulting BTPG admits a TPG with type-2 edges
(E3

3 , C
2
3 ), (C

2
3 , A

1
2), and (F 1

4 , E
3
3). BTPG-n would regard

this BTPG as invalid as it contains a NRNS cycle E3
3 →

C2
3 → A1

2 → E1
3 → F 1

4 → E3
3 .

If we analyze this TPG, it leads to a deadlock where agent
1 is at location I, awaiting agent 2 to enter location C, agent
2 is at location A, awaiting agent 3 to enter E, and agent
3 is at location C, awaiting agent 1 to enter F. However,
since agent 1 and 3 are at I and C, respectively, according to
the BTPG execution policy, edge (G3

4, E
1
3) rather than edge

(F 1
4 , E

3
3) would be selected. Thus, this TPG would never

be encountered during execution. Next, we will go through
several lemmas to formally reason about such cases.

Lemma 1. When agents face a deadlock caused by a cycle
in a BTPG, no agents have visited any states in the cycle.

Proof. Suppose one state vmi in the cycle is visited, then the
edge (vmi , un

j ) in the cycle that points from this state is satis-

(a) MAPF instance.

E1
3

G3
4

C2
3 D2

4

F 1
4A1

2

A2
2

C3
2 E3

3

I11

J2
1

H3
1

(b) Corresponding BTPG. We use Xm
i

to depict vertex vmi with loc(vmi ) = X .

Figure 6: Example where some 2k TPGs may never occur.

fied. This indicates that the agent j can move to state un
j . We

can similarly propagate the logic and show all states in the
cycles can be visited, which is a contradiction to a deadlock.
Therefore, all states in the cycle have not been visited.

Lemma 2. If edge (vni , v
m
j ) ∈ Epair is selected during ex-

ecution, then agent n has already visited state vni−1.

Proof. This can be proved directly from the BTPG execu-
tion policy.

Corollary 1. When agents face a deadlock caused by a cycle
involving edge (vni , v

m
j ) ∈ Epair, agent n is at state vni−1.

Proof. From Lemma 1, agent n must be before state vni .
From Lemma 2, agent n is at or after state vni−1. Thus, agent
n must be at state vni−1.

Theorem 1. If a cycle contains a vertex vni and an edge in
Epair that points from vnj , j > i, then this cycle will not lead
to a deadlock.

Proof. Suppose that this cycle will lead to a deadlock. When
the deadlock occurs, by Corollary 1, agent n is at state vnj−1.
By Lemma 1, agent n has not visited state vni . Thus, state
vni should be after state vnj−1, contradicting the assumption
of j > i. Thus, the theorem holds.

We denote the cycles described in Theorem 1 as non-
deadlock cycles. The cycle in Figure 6b is a non-deadlock
cycle as it contains both vertex A1

2 and edge (F 1
4 , E

3
3).

Property 4 (Valid BTPG-optimized). A BTPG is valid if it
does not contain any cycles apart from rotation cycles, self
cycles, and non-deadlock cycles.

Therefore, our second algorithm BTPG-o extends BTPG-
n by considering non-deadlock cycles. Specifically, in Al-
gorithm 2, we use Vvis to record all vertices that have
been visited along the current DFS branch and skip edge
(vmi , vnj ) ∈ Epair if the current DFS branch contains a state
vmi′ , i

′ < i (Line 8). Furthermore, in Algorithm 1, we repeat
the examining process of type-2 edges until no new bidirec-
tional pair is discovered (Line 3) for the following reason.

Let us consider the example in Figure 6b. If we exam-
ine (D2

4, C
3
2 ) before (F 1

4 , E
3
3), then (D2

4, C
3
2 ) is not added

into Epair because, based on the available information at
that point, cycle E3

3 → C2
3 → A1

2 → E1
3 → F 1

4 → E3
3

is considered a cycle that leads to a deadlock. However,
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Figure 7: Performance of TPG, BTPG-naı̈ve, and BTPG-optimized. The shaded area represents the interquartile range (25%-
75%) of the data distribution. The runtime of BTPG-n and BTPG-o is the time for the two algorithms to finish finding their
respective bidirectional pairs. Even though BTPG-o takes longer to finish finding bidirectional pairs, it finds around 2x more
bidirectional pairs than BTPG-n, so it is actually more efficient than BTPG-n (see Figure 9).

after (F 1
4 , E

3
3) is examined and added into Epair, this cy-

cle becomes a non-deadlock cycle, and thus, (D2
4, C

3
2 ) and

(E3
3 , C

2
3 ) are then added into Epair. Thus, to maximize the

size of Epair, we repeat the examining process until no new
bidirectional pair is discovered. This is unique to BTPG-o,
where the validity condition becomes “easier” to satisfy as
more bidirectional pairs are added since our DFS skips some
edges in bidirectional pairs (see Line 8 in Algorithm 2).

6 Empirical Evaluation
Our experiments work as follows. First, we use the optimal
MAPF solver CBSH2-RTC (Li et al. 2021b) to obtain the
MAPF plan for each given MAPF instance. We have in to-
tal 3,900 simulations, consisting of six different benchmark
maps from (Stern et al. 2019), as shown in Figure 7, each
map with five to eight different numbers of agents, and each
number of agents with ten random instances. The largest
number of agents for each map is determined by the largest
number of agents CBSH2-RTC can solve within 2 minutes.
Then, we convert each MAPF plan into a TPG (for which
the runtime is negligible). Next, we construct BTPG using
our proposed algorithms BTPG-naive and BTPG-optimized.
Last, we simulate the TPG and BTPG execution policies

with 10% agents having a 30% chance of being delayed by
5 timesteps at each non-delayed timestep. Each instance is
simulated with 10 random seeds, resulting in 3,900 simu-
lations per algorithm. All algorithms were implemented in
C++ 1, and all experiments were run on a PC with a 3.60
GHz Intel i7-12700KF CPU and 32 GB of RAM.

Execution Time Figure 7 reports the mean execution
timesteps, namely the average number of timesteps that each
agent takes to reach its target location during execution. We
include a lower bound called Ideal, which is the sum of
timesteps in the original MAPF plan plus the total delay
timesteps of the delayed agents, then divided by the number
of agents. Essentially, Ideal represents an overly optimistic
scenario where delayed agents do not cause any additional
waits for other agents. As shown, BTPG-o consistently out-
performs BTPG-n, which in turn consistently outperforms
TPG, across all maps and all numbers of agents.

To quantify the execution time improvement of BTPG
over TPG, we define improvement as TTPG−TBTPG

TTPG−TIdeal
, where

TTPG, TBTPG, and TIdeal are the mean execution timesteps
of TPG, BTPG, and Ideal, respectively. Figure 8 shows that

1https://github.com/YifanSu1301/BTPG



den520 warehouse Paris random empty Berlin
BTPG-n BTPG-o BTPG-n BTPG-o BTPG-n BTPG-o BTPG-n BTPG-o BTPG-n BTPG-o BTPG-n BTPG-o

Mean imp. 5.9% 8.9% 12.1% 17.9% 10.6% 14.6% 12.9% 15.2% 14.5% 20.9% 9.6% 14.6%
Median imp. 5.7% 8.1% 12.3% 17.8% 10.5% 14.2% 10.3% 12.2% 14.0% 20.0% 9.2% 14.2%

Max imp. 14.0% 19.3% 25.0% 35.3% 20.7% 25.4% 50.0% 63.6% 37.5% 42.9% 21.3% 24.7%
Min imp. 1.1% 2.9% 2.7% 6.7% 4.1% 7.0% 0.0% 0.0% 3.3% 7.4% 3.2% 7.6%

# Type-2 edges 26,738 15,084 24,401 1,151 2,898 27,922
# Singleton edges 2,172 1,051 2,688 146 817 2,265
# Bi-Pairs found 663 1,008 368 532 1,254 1,725 60 76 248 360 1018 1,409
# Used Bi-Pairs 38 68 36 57 82 125 6 6 25 40 68 112

BTPG runtime (s) 23.72 161.88 6.31 8.72 58.12 181.33 0.03 0.04 0.69 1.06 43.32 72.87
MAPF runtime (s) 1.93 9.44 1.12 19.80 1.11 9.90

Table 1: Statistics of BTPG-naı̈ve/optimized. The number of agents for the six maps selected for the statistics are 100, 120, 150,
50, 100, and 150, respectively. All data in the second block are averages of 10 scenarios for each map; Bi-Pairs: bidirectional
pairs; imp.: improvement; Singleton edges: type-2 edges that cannot be grouped.

Figure 8: Improvement of BTPG over TPG per instance.
We find no instances with negative improvements and
3.6%, 23.3%, 41.9%, and 31.2% of instances with no im-
provement, 0-10% improvement, 10-20% improvement, and
>20% improvement across all simulations, respectively.

our improvement is always non-negative over 3,900 simu-
lations, even though, as mentioned in Section 4, we could
have negative improvements in theory. The top block of Ta-
ble 1 further provides detailed numbers on the improvements
over the instances with the largest number of agents for each
map. The median improvement of BTPG-o is in the range of
8-20%, with maximum values around 19-64%.

Bidirectional Pairs The middle block of Table 1 reports
how many bidirectional pairs that our algorithms find and
that are useful. While the TPG has thousands or even ten
thousands of type-2 edges, only about 10% of these edges
are not grouped and have the chance to be changed to
bidirectional pairs. After BTPG-o evaluates these singleton
type-2 edges, about 50% are changed to bidirectional pairs.
We define a bidirectional pair as used if the agents select
the reversed edge rather than the original TPG type-2 edge
during execution. We see that roughly 10% of bidirectional
pairs are used. Although this is a small percentage over the
total number of type-2 edges, these used bidirectional pairs
are the contributors to the significant reduction in execution
time that we reported above.

Figure 9: Anytime behavior of BTPG-n/o on warehouse
with 120 agents. Scenes 1 and 2 are scenarios with the
longest and shortest BTPG-o runtimes, respectively.

Runtime Both Figure 7 and the bottom block of Table 1
report the CPU runtime of our algorithms. As expected,
BTPG-o is slower than BTPG-n. However, we find that the
longer runtime of BTPG-o is due to finding more bidirec-
tional pairs rather than inefficiency. Figure 9 plots the any-
time behavior of both algorithms. For any given cut-off time,
BTPG-o finds more bidirectional pairs and thus leads to bet-
ter improvement than BTPG-n. BTPG-o is more efficient be-
cause its DFS can skip over more edges than BTPG-n.

7 Conclusion
We constructed a new graphical representation of passing
orders in the MAPF plan, BTPG, by proposing the concept
of bidirectional pairs. The main difference between BTPG
and TPG lies in the fact that agents can switch the order of
passing certain locations during execution. Two algorithms,
BTPG-n and BTPG-o, are proposed to construct a BTPG.
The results indicate that following BTPGs consistently out-
perform following TPGs by 8-20% when agents get delayed.
Also, we show our proposed algorithms are anytime, and
given a fixed time budget, BTPG-o outperforms BTPG-n.
Overall, we convincingly show that allowing switching de-
pendencies in a MAPF plan allows us to improve execution
time without replanning.
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