=izt USC University of

Disjoint Splitting for Multi-Agent Path Finding Southern California
. . MONASH
with Conflict-Based Search University
Jiaoyang L1, Daniel Harabor, Peter J. Stuckey, Ariel Felner, Hang Ma, Sven Koenig Ben-Gurion University
of the Negev

Abstract

CBS Splitting

To resolve a collision between agent 7 and agent 7 at vertex v at time ¢:

Multi-Agent Path Finding (MAPF) 1s the planning

problem of finding collision-free paths for a team of
agents. We tocus on Conflict-Based Search (CBS),

* Non-disjoint splitting:

a two-level tree-search state-of-the-art MAPF algo- C The following pair of paths could be explored under both branches:
rithm. The standard splitting strategy used by CBS Time 0

1s not disjoint, 1.e., when 1t splits a problem into two Path for i g

subproblems, some solutions are shared by both sub- _

problems, which can create duplication of search ef- cu{(iv,t)} Cu{{,vt)} Pathior, - |9j

fort. In this paper, we demonstrate how to improve
CBS with disjoint splitting and how to modify the
low-level search of CBS to take maximal advantage
of it. Experiments show that disjoint splitting 1n-
creases the success rates and speeds of CBS and its
variants by up to 2 orders of magnitude.

* Disjoint splitting:

C * Negative constraint (i, v, t):
* Agenti cannotbe at v at time t.
* Positive constraint (i, v, t):
* Agenti mustbe at v attime t.
* Any other agents (including agent j) cannot be at v at time t.

Cuf{(iv,t)} CU{(ivt)}

Background

Multi-Agent Path Finding (MAPF)

e The positive constraint (¢, v, t) is tighter than the negative constraint (j, v, t).

e Disjoint splitting 1s complete since one of the two constraints must hold for any candidate collision-free
paths 1n the parent node, and it 1s disjoint since both constraints cannot hold simultaneously.

e In the low-level search, instead of replanning the entire path, disjoint splitting only replans the path
segment between two positive constraints.

MAPF 1s the problem of finding a set of paths
for a team of agents on a given graph. Each agent
1s required to move from a start vertex to a goal
vertex, while avoiding collisions with others.

Example

Conflict-Based Search (CBS) [2] * Non-disjoint splitting: * Disjoint splitting:

1. Find a path for every agent independently.
2. Check for collisions among paths.
3. If there 1s a collision where both agent 7 and agent o S R 1
j are at vertex v at time ¢: "
e Option 1: prohibit z from being at v at time ¢
by adding a negative constraint (%, v, t).
e Option 2: prohibit j from being in v at time ¢
by adding a negative constraint (j, v, t).
4. Repeat until finding collision-free paths.

2,

Nodes are labeled with the
sum of their path costs.

The tighter positive constraints lead more often to node pruning and thus result in a smaller search tree.

Experimental Results

Figure 1: Success rate (= % of solved instances within 5 minutes) of CBS with non-disjoint splitting and

1.00 1.00 1.00
2 0.80 £ 0.80 5 080
o o o
"~ 0.60 "~ 0.60 . 0.60
3 ¢ 4
8 0.40 & 0.40 8 0.40
- - -
“ 0.20 “ 0.20 “ 0.20

0.00 0.00 0.00

10 20 30 40 50 60 20 30 40 50 60 10 12 14 16 18 20 20 40 60 30 100 120 140

Agents Agents Agents Agents

Conclusion: Disjoint splitting 1s at least as good as non-disjoint splitting and significantly speeds up CBS in many cases.

Open Question: Which Agent to Split on?

We examined the following strategies that
split on the agent
1. uniformly at random (R);

Empirically, strategies 1-4 performed similar, while strategies 5 and 6 performed slightly better.

Table 1: Average runtimes (in seconds) of CBS with splitting strategies 1, 5 and 6. m represents the number of agents.

2. whose path involves the most conflicts; Empty grid 10%-blocked grid Warehouse grid Game grid
3. who has the most constraints imposed; m R S W% m R S W m R S W m R S W
4. who has the least constraints imposed; 20 4.4 3.7 0.2 | 20 0.05 0.1 0.06 | 40 19.0 13.8 21.5 | 12 0.4 0.2 0.3
5. whose MDD has the most singletons be- 30 1.7 1.0 1.2 | 30 0.7 0.4 0.6 | 60 24.1 22.6 24.1 | 14 1.3 0.9 0.9
fore the conflicting time (S); 40 25.5 15.5 19.0 | 40 26.8 18.4 28.0 | &0 66.4 67.5 66.3 | 16 15.9 28.7 15.6
6. whose MDD has the fewest nodes at the | 20 | 121.3 951 925 | 50 | 1587 1495 139.7 | 100 | 599 655 598 | 18 | 633 368 475
60 | 249.6 2330 187.6 | 60 | 2785 2759 2755 | 120 | 132,77 1435 1284 | 20 | 149.0 103.6 1174

This paper was published at ICAPS 2019 [1].]
and 1837779 as well as a gift from Amazon. T

conflicting time (W).
*An MDD for an agent 1s a directed acyclic graph that consists of all shortest paths for this agent.

**An MDD node 1s a singleton 1ff it 1s the only node at some level of the MDD.

[1] J. L1, D. Harabor, P. Stuckey, A. Felner, H. Ma, and S. Koenig. Disjoint splitting for multi-agent path finding with conflict-based search. In ICAPS, pages 279-283, 2019.
[2] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant. Conflict-based search for optimal multi-agent pathfinding. Artificial Intelligence, 219:40-66, 2015.

‘he research at the University of Southern California was supported by the National Science Foundation (NSF) under grant numbers 1409987, 1724392, 1817189
ne research was also supported by the United States-Israel Binational Science Foundation (BSF) under grant number 2017692.

