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1 Abstract
Multi-Agent Path Finding (MAPF) has been widely stud-
ied in the AI community. For example, Conflict-Based
Search (CBS) is a state-of-the-art MAPF algorithm based
on a two-level tree-search. However, previous MAPF al-
gorithms assume that an agent occupies only a single lo-
cation at any given time, e.g., a single cell in a grid. This
limits their applicability in many real-world domains that
have geometric agents in lieu of point agents. Geometric
agents are referred to as “large” agents because they can
occupy multiple points at the same time. In this paper,
we formalize and study LA-MAPF, i.e., MAPF for large
agents. We first show how CBS can be adapted to solve
LA-MAPF. We then present a generalized version of CBS,
called Multi-Constraint CBS (MC-CBS), that adds mul-
tiple constraints (instead of one constraint) for an agent
when it generates a high-level search node. Experimental
results show that all MC-CBS variants outperform CBS
by up to three orders of magnitude in terms of runtime.

2 Application

Figure 1: Autonomous towing ve-
hicles for taxiing aircraft [1].

Figure 5: The Kiva demonstration facility.
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Figure 2: Autonomous
warehouse robots [3].

3 Multi-Agent Path Finding for Large Agent (LA-MAPF)
MAPF is the planning problem of finding a set of paths for a
team of agents on a given graph. Each agent is required to move
from a start location to a goal location, while avoiding collisions
with other agents.

• MAPF: Agents are point agents. They collide when they
are at the same vertex.

• LA-MAPF: Agents have extent. Different agents could
have different shapes. They collide when their shapes
overlap.

Figure 3: Agent model. Figure 4: A collision ex-
ample for LA-MAPF.

4 Conflict-Based Search (CBS) [2]
1. Find a path for every agent independently.
2. Check for collisions among paths.
3. If there is a collision

<agent A, agent B, vertex v, time t>:
• Option 1: prohibit A from being at v at t

by adding constraint <A, v, t>.
• Option 2: prohibit B from being at v at t

by adding constraint <B, v, t>.
4. Repeat until finding collision-free paths.

Figure 5: Applying CBS to solve an LA-MAPF instance.

* means the center of A/B cannot be at cell .

Large agents usually have a large set of related col-
lisions in close proximity. CBS has to resolve them
one by one.

5 Multi-Constraint CBS (MC-CBS)

Figure 6: MC-CBS adds a constraint set, instead of a single con-
straint, to a child node.

Figure 7: An MC-CBS example.

MC-CBS can resolve a set of related collisions in a
single step.
To guarantee the optimality of MC-CBS, any pair of
conflict-free paths should satisfy at least one of the
constraint sets C1 and C2.

6 Mutually Disjunctive
Definition 1. Two constraints for A and B, re-
spectively, are mutually disjunctive iff any pair of
conflict-free paths for A and B satisfies at least one
of the two constraints.

Definition 2. Two constraint sets are mutually
disjunctive iff each constraint in one set is mutually
disjunctive with each constraint in the other set.

Theorem 1. If two constraint sets C1 and C2

are mutually disjunctive, any pair of conflict-free
paths satisfies at least one of the constraint sets.

Approaches for choosing mutually disjunctive
constraint sets:
• ASYM: |C1| = 1 and |C2| > 1 (e.g., Fig. 5).
• SYM: |C1| ≈ |C2|.
• MAX: C1 and C2 maximize the increased costs

of the child nodes.
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7 Experimental Results
Square agents on 2D grids.

Figure 8: Success rates (=solved instances) on 2D grids. The runtime limit for
left figures is 5 minutes. The right figures are results of all numbers of agents.

Ellipsoid agents on a 3D roadmap.
The environment is a 7.5 m × 6.5 m × 2.5 m space
with (0.15 m, 0.15 m, 0.3 m) ellipsoid quadrotors.
Quadrotors are required to fly through 3 windows in
a wall in opposite directions. The roadmap has 869
vertices and 3,371 edges.

Figure 9: Agent shape and roadmap structure.

Figure 10: Runtime on the 3D roadmap.
Summary:
• All MC-CBS variants outperform CBS in all domains by up to 3 orders of magnitude in terms of runtime.
• MDD-SAT is strong for difficult problems in small domains.
• MAX is strong for easy problems or in large domains.
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