
Symmetry-Breaking Constraints
for Grid-Based Multi-Agent Path Finding

Jiaoyang Li, Daniel Harabor, Peter J. Stuckey, Hang Ma, Sven Koenig
jiaoyanl@usc.edu, {daniel.harabor,peter.stuckey}@monash.edu, {hangma,skoenig}@usc.edu

Abstract
We describe a new way of reasoning about symmet-
ric collisions for Multi-Agent Path Finding (MAPF)
on 4-neighbor grids. We also introduce a symmetry-
breaking constraint to resolve these collisions. This
specialized technique allows us to identify and elim-
inate, in a single step, all permutations of two cur-
rently assigned but incompatible paths. Each such
permutation has exactly the same cost as a current
path, and each one results in a new collision between
the same two agents. We show that the addition of
symmetry-breaking techniques can lead to an expo-
nential reduction in the size of the search space of
CBS, a popular framework for MAPF, and report
significant improvements in both runtime and suc-
cess rate versus CBSH and EPEA* – two recent and
state-of-the-art MAPF algorithms.

Multi-Agent Path Finding (MAPF)
MAPF is the planning problem of finding a set of
paths for a team of agents on a given graph. Each
agent is required to move from a start location to a
goal location, while avoiding collisions with others.

Symmetries in MAPF

Figure 1: An example of symmetries in MAPF. All short-
est paths of the two agents collide somewhere inside the
yellow rectangular area. The optimal strategy here is for
one agent to wait for the other. We refer to such cases as
cardinal rectangle conflicts.

CBS is extremely inefficient when resolving cardi-
nal rectangle conflicts.

Figure 2: Number of expanded CBS nodes on MAPF in-
stances where 2 agents are involved in one cardinal rect-
angle conflict.

Conflict-Based Search (CBS) [2]
1. Find a path for every agent independently.
2. Check for conflicts among paths.
3. If there is a conflict where

both agent A and agent B stay in location v at timestep t:
• Option 1: prohibit A from staying in v at t

by adding a vertex constraint <A,v,t>.
• Option 2: prohibit B from staying in v at t

by adding a vertex constraint <B,v,t>.
4. Repeat until finding conflict-free paths. Figure 3: A CBS example reproduced from [1].

* If there are multiple conflicts, we first choose to resolve cardinal conflicts. A conflict is cardinal iff replanning
for any agent involved in the conflict increases the cost.

Rectangle Conflicts and Barrier Constraints
1. Identify rectangle conflicts for entire paths:

• Shortest paths of both agents are Manhattan-
optimal.

• The two start locations have the same Manhattan
distances to any location inside the rectangle.

1*. Identify rectangle conflicts for path segments:
(1) Find critical locations (i.e., locations that all

shortest paths traverse) for both agents.
(2) Regard these critical locations as the start loca-

tions and the goal locations.
(3) Reason about these locations using a similar

method as Step 1.

Figure 4: A rectangle conflict for path segments.

2. Classify rectangle conflicts:
• Cardinal: unavoidable conflict. One of the two

agents has to wait.
• Semi-Cardinal: just one agent can be replanned

to avoid the conflict.
• Non-Cardinal: either agent can be replanned to

avoid the conflict.

(a) Cardinal (b) Semi-Cardinal (c) Non-Cardinal

Figure 5: Different types of rectangle conflicts.

*Classification of rectangle conflicts allows us to
choose to resolve cardinal conflicts first.

3. Resolve rectangle conflicts:

• We give one agent priority within the rectan-
gle and force the other agent to leave the rect-
angle later or take a detour by adding barrier
constraints.

• A barrier constraint is a set of vertex con-
straints that prohibits one agent from occupy-
ing all locations along the border of the rect-
angle that is opposite of its start location at the
timestep when it would optimally reach it.

• Adding barrier constraints guarantees the opti-
mality since any pair of conflict-free paths sat-
isfies at least one of the barrier constraint.

Figure 6: An example of adding barrier constraints. In
the left child node, a2 has priority and a1 has to wait for
one timestep. In the right child node, a1 has priority and
a2 has to wait for one timestep. Both child nodes have
conflict-free paths.

Experimental Results
EPEA*: a state-of-the-art A*-based MAPF algorithm. CBSH: a state-of-the-art CBS variant.
CBSH-RM: CBSH with our rectangle reasoning method.

Figure 7: Success rate (=solved instances within 5 minutes) on different grids.

Table 1: Runtime and Number of expanded CBS nodes on
20 × 20 grids with and without blocked cells. Numbers
shown in the table are averages over instances solved by
both algorithms.

Blocked
Agents

Solved Runtime (s) #CBS Nodes
cells instances CBSH CBSH-RM CBSH CBSH-RM

0%

30 46 6.2 0.02 29,506 87
40 40 2.1 0.02 10,889 105
50 27 14.8 1.4 92,627 5,925
60 9 28.4 2.9 169,916 16,194

10%

20 50 2.1 0.002 9,567 8
30 50 4.5 2.2 19,322 8,702
40 43 17.7 4.4 96,121 21,384
50 16 19.0 16.4 97,553 79,975

[1] A. Felner, J. Li, E. Boyarski, H. Ma, L. Cohen, S. Kumar, and S. Koenig. Adding heuristics to conflict-based search for multi-agent path finding. In ICAPS, pages 83–87, 2018.
[2] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant. Conflict-based search for optimal multi-agent pathfinding. Artificial Intelligence, 219:40–66, 2015.
The research at the University of Southern California was supported by the National Science Foundation (NSF) under grant numbers 1409987, 1724392, 1817189 and 1837779 as well as a gift from Amazon. The views and conclusions
contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the sponsoring organizations, agencies or the U.S. government.


