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Fulfillment center Sorting center

Video and picture sources:
[top left] High-speed robots part 1: meet bettybot in "human exclusion zone" warehouses. https://www.youtube.com/watch?v=8gy5tYVR-28&list=PL1JBGaGtAhqTLBCFWTB5pw6KghwkJhA3g&index=2&t=0s
[top right] Inside the amazon warehouse where humans and machines become one. https://www.wired.com/story/amazon-warehouse-robots/
[bottom left] Peter R. Wurman, Raffaello D’Andrea, and Mick Mountz. Coordinating hundreds of cooperative, autonomous vehicles in warehouses. In Proceedings of the 22nd AAAI Conference on Artificial Intelligence (AAAI), pages 1752–1760, 2007.
[bottom right] Qian Wan, Chonglin Gu, Sankui Sun, Mengxia Chen, Hejiao Huang, and Xiaohua Jia. Lifelong multi-agent path finding in a dynamic environment. In Proceedings of the 15th International Conference on Control, Automation, Robotics and 
Vision (ICARCV), pages 875–882, 2018.
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Traditional single-agent 
pathfinding solver

Our multi-agent 
pathfinding solver

800 agents on a 37x77 sorting-center map with 50 working stations and 275 chutes.



Overview

• Multi-Agent Path Finding (MAPF) and lifelong MAPF

• Three existing methods for solving lifelong MAPF
• Method 1: Solving lifelong MAPF as a whole.

• Method 2: Solving a MAPF instance (incrementally) for all agents at every timestep.

• Method 3: Solving a MAPF instance for a subset of agents at every timestep.

• Our method for solving lifelong MAPF
• Solving a Windowed MAPF instance for all agents every ℎ timesteps.

• Experiments
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Multi-Agent Path Finding (MAPF)

• Inputs
• A graph 

• 𝑚 agents, each with 

• a start location,

• a goal location.

• Objective
• Finding a set of collision-free paths, one for 

each agent, while minimizing the sum of the 
travel times.
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Multi-Agent Path Finding (MAPF)

• MAPF algorithms
• Complete and optimal

• ICTS [Sharon et al 2011], 

• M* [Wagner et al 2011], 

• CBS [Sharon et al 2012], 

• EPEA* [Goldenberg et al 2014], 

• MDD-SAT [Surynek et al 2016], 

• BCP [Lam et al 2019].

• Complete and suboptimal
• BIBOX [Surynek 2009],

• TASS [Khorshid et al 2011],

• Push and Rotate [de Wilde et al 2014],

• ECBS [Barer et al 2014],

• ECBS with highways [Cohen et al 2015].

• Incomplete
• WHCA*[Silver 2005], 

• Push and Swap [Luna et al 2011],

• PBS [Ma et al 2019], 

• PIBT [Okumura et al 2019],

• DDM [Han et al 2020].
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Multi-Agent Path Finding (MAPF)

• Lifelong MAPF
• Agents are constantly assigned new goal locations.
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Prior Work – Method 1

• Solving lifelong MAPF as a whole [Nguyen et al 2017].
• Formulate lifelong MAPF as an answer set programming problem.

• Drawbacks

• Needs to know all goal locations a priori.

• Has limited scalability.

8[1] Van Nguyen, Philipp Obermeier, Tran Cao Son, Torsten Schaub, and William Yeoh. Generalized target assignment and path finding using answer set programming. In In Proceedings of the 26th 
International Joint Conference on Artificial Intelligence (IJCAI), pages 1216–1223, 2017.



Prior Work – Method 2

• Solving a MAPF instance (incrementally) for all agents at every timestep [Wan et al 2018; 
Svancara et al 2019].
• Start locations: current locations of all agents

• Goal locations: next goal locations of all agents

• Drawbacks

• Needs  to replan paths at every timestep (or at least at those timesteps when some
agents have reached their goal locations).

• Might do a lot of repeated or redundant work.
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Prior Work – Method 3

• Solving a MAPF instance for only the agents with new goal locations at every timestep 
[Cap et al 2015; Ma et al 2017; Liu et al 2019].
• Start locations: current locations of agents with new goal locations 

• Goal locations: new goal locations

• Drawbacks

• Needs  to plan paths at every timestep (or at least at those timesteps when some
agents have reached their goal locations).

• Could generate poor-quality solutions. 

• Only works for a special class of maps (i.e., well-formed maps).
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Our Method

• Solving a Windowed MAPF instance for all agents every 𝒉 timesteps.
• In a Windowed MAPF instance,

• collisions need to be resolved only for the first 𝑤 timesteps (𝑤 ≥ ℎ).

• an agent might be assigned a sequence of goal locations.

• Many existing MAPF solvers can be easily adapted to solve Windowed MAPF, e.g., 
• CBS (complete and optimal), 

• ECBS (complete and bounded suboptimal), 

• CA* (incomplete), 

• PBS (incomplete).
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detect collisions only for the first 𝑤 timesteps

avoid collisions with higher-priority agents only for the first 𝑤 timesteps.

detect collisions only for the first 𝑤 timesteps, and
avoid collisions with higher-priority agents only for the first 𝑤 timesteps.

Multi-Label A*
[Grenouilleau et al 2019]

[1] Florian Grenouilleau, Willem-Jan van Hoeve, and John N. Hooker. A multi-label A* algorithm for multi-agent pathfinding. In Proceedings of the 29th International Conference on Automated 
Planning and Scheduling (ICAPS), pages 181–185, 2019.



Our Method

• Solving a Windowed MAPF instance for all agents every 𝒉 timesteps.
• In a Windowed MAPF instance,

• Collisions need to be resolved only for the first 𝑤 timesteps (𝑤 ≥ ℎ).

• An agent might be assigned a sequence of goal locations.

• Advantages:
1. Works for all kinds of maps.

2. Does not have to replan paths at every timestep.

3. Could significantly reduce the runtime of the solvers.

4. Could still produce high-quality solutions.

• because resolving all collisions within the entire time horizon is often unnecessary 
since the paths of the agents can change as new goal locations arrive.
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A comparison with Method 3:

• All methods use PBS as the (Windowed) MAPF solver.
• Our method: resolving collsions for the first 𝑤 = 20 timesteps and replanning paths every 

ℎ = 5 timesteps.
• Throughput: average number of visited goal locations per timestep.
• Runtime: average runtime per run in seconds.

Experiment 1 – Fulfillment Center
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Well-formed map

Agents
Holding endpoints Dummy paths Our method

Throughput Runtime (s) Throughput Runtime (s) Throughput Runtime (s)

60 2.17 0.01 2.19 0.02 2.33 0.33

100 3.33 0.02 3.41 0.05 3.56 2.04

140 4.35 0.04 4.50 0.17 4.55 7.78



Experiment 2 – Sorting Center

Throughput

Runtime (s)

Throughput

Runtime (s)

Not a well-formed map

A comparison with different w:

• Replanning paths every ℎ = 5 timesteps.
• “-” indicates that the runtime of the Windowed MAPF solver exceeds one minute per run. 14



Summary

• Lifelong MAPF
• Definition

• Three existing methods

• Our method: Solving a Windowed MAPF instance for all agents every ℎ timesteps.
• Works for all kinds of maps.

• Does not have to replan paths at every timestep.

• Could significantly reduce the runtime of the solvers.

• Could still produce high-quality solutions

• Scales up to 1,000 agents in simulated sorting centers.
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