

Using FastMap to Solve Graph Problems in a Euclidean Space

Jiaoyang Li, Ariel Felner, Sven Koenig, T. K. Satish Kumar Berkeley, CA 07/13/2019

Motivation

- Many graph problems have variants that are also studied in a Euclidean space.
 - Traveling Salesman Problem.
 - Minimum Spanning Tree.
 - ...
- In many cases, the Euclidean variants are easier to solve than the graph variants.

Our idea

Graph solution

Euclidean solution

Our idea

- FastMap [Faloutsos et al., 1995; Cohen et al., 2018]
 - Every vertex $v \in G$ is mapped to a point $p \in R^{K}$.
 - shortest_path_distance $(v_i, v_j) \approx$ Euclidean_distance (p_i, p_j) .
 - Complexity of the embedding: $O(|E| + |V| \log |V|)$.

An undirected graph

Our idea

Applications

- 1. Multi-Agent Meeting Problem
- 2. Path-Finding Problem

Applications

- 1. Multi-Agent Meeting Problem
- 2. Path-Finding Problem

Fermat-Weber problem (1-median problem)

Median point in the Euclidean space

Median point in the Euclidean space

10 start locations

Graph	Suboptimality (%)	Runtime (ms)	Dijkstra runtime (ms)
Game grids	0.22	7	8
	3.00	22	22
Maze grids	6.54	148	177
	6.76	268	362
Random grids	5.96	117	181
	20.53	275	409
General graphs	33.81	1	2
	34.80	4	10

All grids are from [Sturtevant 2012]. General graphs are from [Beasley 1990].

100 start locations

Graph	Suboptimality (%)	Runtime (ms)	Dijkstra runtime (ms)
Game grids	0.22	7	58
	1.32	22	187
Maze grids	4.83	149	1,730
	3.95	268	3,535
Random grids	2.99	118	1,744
	17.81	275	4,051
General graphs	12.53	2	16
	16.79	4	90

All grids are from [Sturtevant 2012]. General graphs are from [Beasley 1990].

1000 start locations

Graph	Suboptimality (%)	Runtime (ms)	Dijkstra runtime (ms)
Game grids	0.07	11	510
	0.98	27	1,841
Maze grids	2.64	155	17,221
	1.17	274	35,450
Random grids	2.69	124	17,633
	17.40	280	40,582
General graphs	9.12	4	144
	15.57	7	810

All grids are from [Sturtevant 2012]. General graphs are from [Beasley 1990].

Applications

- 1. Multi-Agent Meeting Problem
- 2. Path-Finding Problem

▲ Start and goal locations

Recursion depth r = 1

▲ Start and goal locations

Middle point in the Euclidean space

Recursion depth r = 1

▲ Start and goal locations

Recursion depth r = 2

Middle point in the Euclidean space

Recursion depth r = 2

▲ Start and goal locations

• The runtime is worse than A* search.

r is the recursion depth.

r = 0 reduces to A* search.

Summary

- Many graph problems have Euclidean variants that are easier to solve.
- Our framework:

- Two applications:
 - The multi-agent meeting problem.
 - The path-finding problem.