

Improved Heuristics for Multi-Agent Path Finding with Conflict-Based Search

Jiaoyang Li, Ariel Felner, Eli Boyarski,
Hang Ma and Sven Koenig
Macao, China
08/13/2019

Outlines

- Background:
 - Multi-Agent Path Finding.
 - Conflict-Based Search.
 - CG heuristics for Conflict-Based Search.
- Two more informed heuristics:
 - DG heuristics.
 - WDG heuristics.
- Experimental results.
- Summary.

Multi-Agent Path Finding (MAPF)

- Given:
 - A graph;
 - A set of agents, each with a start location and a goal location.
- Goal:
 - Find collision-free paths for all agents;
 - Minimize the sum of path costs.

	2		
1			(1)
		(2)	

Conflict-Based Search (CBS) [Sharon et al. 2015]

Conflict-Based Search (CBS) [Sharon et al. 2015]

• CBS searches in a binary tree in a best-first manner according to the sum of path costs.

Conflict-Based Search (CBS) [Sharon et al. 2015]

- CBSH [Felner et al. 2018] adds admissible heuristics to CBS.
 - A conflict is *cardinal* iff all shortest paths of the both agents traverse the conflicting location at the conflicting time.
 - A cardinal conflict is an admissible h-value of 1.

CBSH [Felner et al. 2018]

- Cardinal conflict graph
- Minimum Vertex Cover

$$h_{CG} = 3$$

We call this CG Heuristics.

Can We Get Better Heuristics?

- Two agents are *dependent* iff every pair of their shortest paths has at least one conflict.
- A pair of dependent agents is an admissible h-value of 1.
- Two agents that have cardinal conflicts are dependent.

DG Heuristics

• Dependency graph

$$h_{DG}=4$$

Can We Get Better Heuristics?

- The *weight* for a pair of agents is the difference between the minimum sum of the costs of their conflict-free paths and the sum of their shortest path costs.
- The weight is an admissible h-value for the pair of agents.
- The weight for a pair of dependent agents is at least one.

WDG Heuristics

 Edge-weighted dependency graph

 Edge-weighted Minimum Vertex Cover

$$h_{WDG} = 7$$

Empty grid

20x20 empty grid

Dense grid

20x20 grid with 30% randomly blocked cells

Large grid

192x192 grid with 51% blocked cells

Runtime breakdown per expanded node.

Summary

- Two admissible heuristics for CBS, DG and WDG, by reasoning about pairwise dependency between agents:
 - h-value: $h_{WDG} \ge h_{DG} \ge h_{CG}$.
 - Runtime overhead: relatively small.
 - Overall performance: WDG is better than DG, which in turn is better than CG.
- Future work:
 - Generalize these heuristics to groups larger than pairs of agents, e.g., to triples and quadruples.
 - Study admissible or inadmissible heuristics for sub-optimal CBS-based algorithms.